Monte Carlo Filter-Based Motion Artifact Removal From Electrocardiogram Signal for Real-Time Telecardiology System

人工智能 工件(错误) 计算机科学 信号(编程语言) 模式识别(心理学) 节拍(声学) 蒙特卡罗方法 信号处理 特征提取 滤波器(信号处理) 计算机视觉 语音识别 数学 数字信号处理 声学 统计 物理 程序设计语言 计算机硬件
作者
Soumyendu Banerjee,Girish Kumar Singh
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:7
标识
DOI:10.1109/tim.2021.3102737
摘要

Motion artifact (MA) contamination with electrocardiogram (ECG) signal is a common issue caused by body movement or sensor loosening, resulting in distortion of clinical features of ECG. In this work, the Monte Carlo filter (MCF)-based MA removal from single-channel ECG signal is proposed, assisting in real-time telecardiology systems. Initially, after R-peak detection and beat extraction, principal component (PC) analysis was performed upon clean ECG beats, and PC, with the highest energy, was assumed to be the feature beat. Using this feature beat, MA corrupted beats were denoised successively to achieve a clean pattern of ECG using MCF. A new approach of weight calculation and resampling was also proposed for better performance of the MCF. Performance of the proposed algorithm was tested on the IEEE Signal Processing Cup Challenge 2015 ECG database and MIT-BIH arrythmia records, with an improvement of signal-to-noise ratio between 10 and 15 dB, after MA removal. The proposed work was also tested on real-time ECG data collected from ten healthy volunteers using the AD8232 ECG module and Raspberry Pi, resulting in correlation coefficient higher than 0.99, between the original and denoised signals. The proposed algorithm was able to remove MA from any single-channel MA corrupted ECG signal, irrespective of lead category, using features of clean beats. A comparative study of the obtained result with previously published works ensured the superior performance on MA removal from ECG in the proposed work, along with real-time data collection, processing, and transmission.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
gg发布了新的文献求助10
刚刚
完美的冰淇淋完成签到,获得积分10
1秒前
张教授发布了新的文献求助10
1秒前
我爱科研发布了新的文献求助10
1秒前
2秒前
嗯嗯嗯完成签到,获得积分10
2秒前
2秒前
2秒前
Lucas应助yy采纳,获得10
5秒前
6秒前
ting发布了新的文献求助10
6秒前
6秒前
窦嘉懿完成签到 ,获得积分10
7秒前
7秒前
Lucas应助gg采纳,获得10
8秒前
8秒前
隔壁老六发布了新的文献求助10
8秒前
lemon完成签到,获得积分10
8秒前
可爱的羽毛完成签到,获得积分10
9秒前
搞怪玩家发布了新的文献求助10
9秒前
wellshine完成签到,获得积分10
10秒前
sure完成签到 ,获得积分20
10秒前
爆米花应助sdl采纳,获得10
11秒前
白白嫩嫩发布了新的文献求助60
11秒前
12秒前
烂漫草莓完成签到,获得积分10
12秒前
12秒前
田様应助单薄的雪兰采纳,获得10
12秒前
13秒前
senyusing完成签到,获得积分10
13秒前
负责的靖琪完成签到 ,获得积分10
13秒前
EmmaLin完成签到,获得积分10
13秒前
李爱国应助淡然的衣采纳,获得10
13秒前
卓荦完成签到,获得积分10
14秒前
14秒前
Windfall发布了新的文献求助10
14秒前
宝海青完成签到,获得积分10
14秒前
桐桐应助莫道桑榆晚采纳,获得10
16秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588