亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning accelerates quantum mechanics predictions of molecular crystals

物理 Atom(片上系统) 领域(数学) 片段(逻辑) 分子 晶体结构预测 工作(物理) QM/毫米 统计物理学 量子力学 算法 计算机科学 数学 纯数学 嵌入式系统
作者
Yanqiang Han,Imran Ali,Zhilong Wang,Junfei Cai,Sicheng Wu,Jiequn Tang,Lin Zhang,Jiahao Ren,M. Xiao,Qianqian Lu,Lei Hang,Hongyuan Luo,Jinjin Li
出处
期刊:Physics Reports [Elsevier BV]
卷期号:934: 1-71 被引量:34
标识
DOI:10.1016/j.physrep.2021.08.002
摘要

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role in calculating molecules and crystals with a high accuracy and acceptable efficiency. In recent years, with the development of artificial intelligence technology, machine learning (ML) has played an increasingly essential role in accelerating the QM calculations and predictions of molecular crystals, as well as the discovery of novel materials. This review provides state-of-the-art information and prospects for QM theories, fragment-based methods and ML methods, as well as their up-to-date applications in predicting small inorganic molecules, large drug molecules and relevant molecular crystals. The discussed applications include ML potential energy surface (PES) construction, crystal structure prediction (CSP), chemical reaction prediction and predictions of a series of properties, such as structure, energy, atomic force, bond length, chemical shift, superconductivity, super-hardness, vibrational spectra, phase transition and diagram. This work also reviews software and packages built recently based on ML methods for property predictions and PES constructions in the field of physics and chemistry. For the three discussed methods, the most time-consuming one is the high-level all-atom QM method, which is capable of describing electronic structures with high accuracy and thus predicts properties that are consistent with the experimental results. The second one, fragment-based QM method, requires less computational time than all-atom QM, which can accelerate all-atom QM calculations for large systems by dividing the entire system into subsystems, presenting a considerable efficiency increase. The computational complexities for fragment-based QM and all-atom QM are N - N2 and N5-N7 (N is the size of the system), respectively. A well-trained ML model can make the above predictions within seconds while ensuring a high prediction accuracy, where its prediction cost and accuracy are determined by the training data and the training process. Therefore, it is challenging for ML applications in physics and chemistry to generate highly accurate and powerful ML models while ensuring sufficient datasets. This work not only provides an overview of the recent progress in QM theories, fragment-based methods, ML methods and several ML-based software programs and applications on small inorganic molecules, large drug molecules and relevant crystals, but also shed light on ML methods in accelerating QM prediction, optimization and novel crystal material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形无敌完成签到,获得积分20
6秒前
OCDer完成签到,获得积分0
15秒前
19秒前
从容芮应助OCDer采纳,获得150
19秒前
20秒前
20秒前
fly发布了新的文献求助10
24秒前
小乔发布了新的文献求助10
25秒前
圈哥完成签到 ,获得积分10
29秒前
阔达初南完成签到 ,获得积分10
31秒前
绍成完成签到 ,获得积分10
37秒前
贾明灵完成签到,获得积分10
45秒前
49秒前
rzxhygr发布了新的文献求助10
53秒前
李在猛完成签到 ,获得积分10
55秒前
筱筱完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
Qinqinasm完成签到,获得积分10
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
萧萧发布了新的文献求助10
1分钟前
领导范儿应助萧萧采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
polaris完成签到,获得积分10
1分钟前
1分钟前
从容芮应助OCDer采纳,获得150
1分钟前
Wfmmm完成签到,获得积分10
1分钟前
不开心就吃糖完成签到 ,获得积分10
1分钟前
激情的代曼完成签到,获得积分10
2分钟前
晓鸭的平凡世界完成签到,获得积分10
2分钟前
万能图书馆应助yaya采纳,获得10
2分钟前
2分钟前
2分钟前
Thi发布了新的文献求助10
2分钟前
科研通AI2S应助cece采纳,获得10
2分钟前
crainbowc完成签到,获得积分10
2分钟前
ding应助fly采纳,获得10
2分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901807
求助须知:如何正确求助?哪些是违规求助? 3446507
关于积分的说明 10844894
捐赠科研通 3171617
什么是DOI,文献DOI怎么找? 1752407
邀请新用户注册赠送积分活动 847230
科研通“疑难数据库(出版商)”最低求助积分说明 789757