The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data.

药代动力学 分配量 加药 药理学 体内 体外 化学 分布(数学) 基于生理学的药代动力学模型 新陈代谢 医学 药效学 代谢物 药品 药物代谢
作者
R S Obach,J G Baxter,T E Liston,B M Silber,B C Jones,F MacIntyre,D J Rance,P Wastall
出处
期刊:Journal of Pharmacology and Experimental Therapeutics [American Society for Pharmacology and Experimental Therapeutics]
卷期号:283 (1): 46-58 被引量:689
链接
标识
摘要

We describe a comprehensive retrospective analysis in which the abilities of several methods by which human pharmacokinetic parameters are predicted from preclinical pharmacokinetic data and/or in vitro metabolism data were assessed. The prediction methods examined included both methods from the scientific literature as well as some described in this report for the first time. Four methods were examined for their ability to predict human volume of distribution. Three were highly predictive, yielding, on average, predictions that were within 60% to 90% of actual values. Twelve methods were assessed for their utility in predicting clearance. The most successful allometric scaling method yielded clearance predictions that were, on average, within 80% of actual values. The best methods in which in vitro metabolism data from human liver microsomes were scaled to in vivo clearance values yielded predicted clearance values that were, on average, within 70% to 80% of actual values. Human t1/2 was predicted by combining predictions of human volume of distribution and clearance. The best t1/2 prediction methods successfully assigned compounds to appropriate dosing regimen categories (e.g., once daily, twice daily and so forth) 70% to 80% of the time. In addition, correlations between human t1/2 and t1/2 values from preclinical species were also generally successful (72-87%) when used to predict human dosing regimens. In summary, this retrospective analysis has identified several approaches by which human pharmacokinetic data can be predicted from preclinical data. Such approaches should find utility in the drug discovery and development processes in the identification and selection of compounds that will possess appropriate pharmacokinetic characteristics in humans for progression to clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chen完成签到,获得积分10
刚刚
竹子完成签到,获得积分10
刚刚
REN完成签到,获得积分10
1秒前
心安完成签到,获得积分10
1秒前
传奇3应助liuchao采纳,获得10
1秒前
zhz完成签到,获得积分10
2秒前
殇春秋发布了新的文献求助10
2秒前
2秒前
3秒前
伶俐的铁身完成签到,获得积分10
3秒前
潇洒的冰烟完成签到,获得积分10
3秒前
RR发布了新的文献求助30
4秒前
科研通AI5应助嘿嘿采纳,获得10
4秒前
March完成签到,获得积分10
4秒前
fukesi完成签到,获得积分10
5秒前
大yu乐家完成签到,获得积分10
5秒前
5秒前
久旱逢甘霖完成签到 ,获得积分10
5秒前
5秒前
浴火重生完成签到,获得积分10
5秒前
丘比特应助自然代亦采纳,获得10
5秒前
尼克11完成签到,获得积分10
6秒前
大模型应助杜瑞茜采纳,获得10
6秒前
白白白完成签到,获得积分10
6秒前
飘逸的清涟完成签到,获得积分10
7秒前
8秒前
研途牛马发布了新的文献求助10
8秒前
张张完成签到,获得积分10
8秒前
大模型应助zxcv23采纳,获得10
8秒前
叶知秋完成签到,获得积分10
8秒前
taster发布了新的文献求助10
9秒前
zz完成签到 ,获得积分10
9秒前
mfy0068完成签到,获得积分10
9秒前
万能图书馆应助99采纳,获得10
9秒前
ELiaukoay完成签到 ,获得积分10
10秒前
10秒前
执意完成签到 ,获得积分10
11秒前
小马甲应助周周采纳,获得10
11秒前
SciGPT应助archaea采纳,获得10
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787