Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram

肥厚性心肌病 医学 心脏病学 内科学 置信区间 卷积神经网络 心电图 心源性猝死 曲线下面积 人工智能 计算机科学
作者
Wei-Yin Ko,Konstantinos C. Siontis,Zachi I. Attia,Rickey E. Carter,Suraj Kapa,Steve R. Ommen,Steven J. Demuth,Michael J. Ackerman,Bernard J. Gersh,Adelaide M. Arruda‐Olson,Jeffrey B. Geske,Samuel J. Asirvatham,Francisco López-Jiménez,Rick A. Nishimura,Paul A. Friedman,Peter A. Noseworthy
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:75 (7): 722-733 被引量:291
标识
DOI:10.1016/j.jacc.2019.12.030
摘要

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达彦腾完成签到,获得积分10
刚刚
侃侃完成签到,获得积分10
1秒前
祁笑言完成签到,获得积分10
1秒前
happy发布了新的文献求助10
1秒前
雨阳完成签到,获得积分10
2秒前
2秒前
2秒前
是然完成签到 ,获得积分10
3秒前
曲奇完成签到,获得积分10
3秒前
Yang发布了新的文献求助10
3秒前
3秒前
东方耀发布了新的文献求助10
3秒前
4秒前
小蘑菇应助敏敏采纳,获得10
4秒前
即日启程发布了新的文献求助10
5秒前
6秒前
mhy完成签到 ,获得积分10
6秒前
君临天下完成签到,获得积分10
6秒前
热心子轩应助HSD采纳,获得10
6秒前
ya发布了新的文献求助10
7秒前
xmz完成签到,获得积分10
7秒前
power完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
杨怂怂发布了新的文献求助10
8秒前
LVVVB发布了新的文献求助10
9秒前
科研通AI5应助赵创采纳,获得10
9秒前
小张同学完成签到,获得积分10
9秒前
林距离发布了新的文献求助30
10秒前
中中中发布了新的文献求助30
10秒前
李健的粉丝团团长应助XXX采纳,获得10
10秒前
11秒前
菠萝吹雪发布了新的文献求助10
11秒前
小马甲应助坚定的道天采纳,获得10
11秒前
传奇3应助爱听歌泥猴桃采纳,获得10
11秒前
英俊的铭应助莹仔采纳,获得10
11秒前
12秒前
Zwuijl发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463475
求助须知:如何正确求助?哪些是违规求助? 3926144
关于积分的说明 12183570
捐赠科研通 3578776
什么是DOI,文献DOI怎么找? 1966154
邀请新用户注册赠送积分活动 1004867
科研通“疑难数据库(出版商)”最低求助积分说明 899296