Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram

肥厚性心肌病 医学 心脏病学 内科学 置信区间 卷积神经网络 心电图 心源性猝死 曲线下面积 人工智能 计算机科学
作者
Wei-Yin Ko,Konstantinos C. Siontis,Zachi I. Attia,Rickey E. Carter,Suraj Kapa,Steve R. Ommen,Steven J. Demuth,Michael J. Ackerman,Bernard J. Gersh,Adelaide M. Arruda‐Olson,Jeffrey B. Geske,Samuel J. Asirvatham,Francisco López-Jiménez,Rick A. Nishimura,Paul A. Friedman,Peter A. Noseworthy
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:75 (7): 722-733 被引量:290
标识
DOI:10.1016/j.jacc.2019.12.030
摘要

Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐的小熊猫完成签到,获得积分10
刚刚
英姑应助凌代萱采纳,获得10
2秒前
meimei发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
Yy完成签到,获得积分10
4秒前
充电宝应助贺贺采纳,获得10
4秒前
Samuel_发布了新的文献求助10
5秒前
张学虫完成签到 ,获得积分10
6秒前
高分子bro完成签到,获得积分10
6秒前
Yy发布了新的文献求助10
6秒前
7秒前
所所应助冰河采纳,获得10
7秒前
彭于晏应助是ok耶采纳,获得10
8秒前
8秒前
米半完成签到,获得积分10
9秒前
远志发布了新的文献求助10
9秒前
钟薛菘发布了新的文献求助10
10秒前
董晨颖发布了新的文献求助10
10秒前
归陌完成签到 ,获得积分10
11秒前
yian007发布了新的文献求助10
11秒前
11秒前
JJJJJin完成签到,获得积分10
12秒前
俊逸海豚发布了新的文献求助20
12秒前
12秒前
13秒前
14秒前
15秒前
bly完成签到,获得积分20
15秒前
15秒前
15秒前
研友_LOoomL完成签到 ,获得积分10
15秒前
烟花应助要减肥的嘉懿采纳,获得10
16秒前
JJJJJin发布了新的文献求助10
16秒前
脑洞疼应助lynn采纳,获得10
16秒前
wenbaka发布了新的文献求助10
16秒前
16秒前
啦啦啦啦啦完成签到,获得积分10
17秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915483
求助须知:如何正确求助?哪些是违规求助? 3460920
关于积分的说明 10914408
捐赠科研通 3187812
什么是DOI,文献DOI怎么找? 1762160
邀请新用户注册赠送积分活动 852515
科研通“疑难数据库(出版商)”最低求助积分说明 793471