分段
磁滞
模拟退火
数学优化
花键(机械)
约束(计算机辅助设计)
磁滞
稳健性(进化)
电工钢
分段线性函数
计算机科学
数学
控制理论(社会学)
应用数学
磁化
材料科学
数学分析
工程类
物理
结构工程
几何学
磁场
控制(管理)
量子力学
人工智能
复合材料
生物化学
化学
基因
作者
Brijesh Upadhaya,Paavo Rasilo,Lauri Perkkiö,Paul Handgruber,Anouar Belahcen,Antero Arkkio
出处
期刊:Compel-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering
[Emerald Publishing Limited]
日期:2020-08-24
卷期号:39 (6): 1281-1298
被引量:9
标识
DOI:10.1108/compel-08-2019-0332
摘要
Purpose Improperly fitted parameters for the Jiles–Atherton (JA) hysteresis model can lead to non-physical hysteresis loops when ferromagnetic materials are simulated. This can be remedied by including a proper physical constraint in the parameter-fitting optimization algorithm. This paper aims to implement the constraint in the meta-heuristic simulated annealing (SA) optimization and Nelder–Mead simplex (NMS) algorithms to find JA model parameters that yield a physical hysteresis loop. The quasi-static B(H)-characteristics of a non-oriented (NO) silicon steel sheet are simulated, using existing measurements from a single sheet tester. Hysteresis loops received from the JA model under modified logistic function and piecewise cubic spline fitted to the average M(H) curve are compared against the measured minor and major hysteresis loops. Design/methodology/approach A physical constraint takes into account the anhysteretic susceptibility at the origin. This helps in the optimization decision-making, whether to accept or reject randomly generated parameters at a given iteration step. A combination of global and local heuristic optimization methods is used to determine the parameters of the JA hysteresis model. First, the SA method is applied and after that the NMS method is used in the process. Findings The implementation of a physical constraint improves the robustness of the parameter fitting and leads to more physical hysteresis loops. Modeling the anhysteretic magnetization by a spline fitted to the average of a measured major hysteresis loop provides a significantly better fit with the data than using analytical functions for the purpose. The results show that a modified logistic function can be considered a suitable anhysteretic (analytical) function for the NO silicon steel used in this paper. At high magnitude excitations, the average M(H) curve yields the proper fitting with the measured hysteresis loop. However, the parameters valid for the major hysteresis loop do not produce proper fitting for minor hysteresis loops. Originality/value The physical constraint is added in the SA and NMS optimization algorithms. The optimization algorithms are taken from the GNU Scientific Library, which is available from the GNU project. The methods described in this paper can be applied to estimate the physical parameters of the JA hysteresis model, particularly for the unidirectional alternating B(H) characteristics of NO silicon steel.
科研通智能强力驱动
Strongly Powered by AbleSci AI