Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

计算机科学 最优化问题 凸优化 正多边形 算法 数学优化 数学 几何学
作者
Stephen Boyd
出处
期刊:Foundations and trends in machine learning [Now Publishers]
被引量:13220
标识
DOI:10.1561/9781601984616
摘要

Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助星睿采纳,获得10
1秒前
猪猪想要平静的生活完成签到 ,获得积分10
1秒前
樊璐发布了新的文献求助10
2秒前
lioutu完成签到 ,获得积分10
3秒前
3秒前
4秒前
大个应助打工人章鱼哥采纳,获得10
4秒前
4秒前
yqb发布了新的文献求助10
6秒前
CodeCraft应助ssw采纳,获得10
7秒前
aero完成签到 ,获得积分10
7秒前
樊璐完成签到,获得积分10
8秒前
完美世界应助LL采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
13秒前
16秒前
huang发布了新的文献求助10
16秒前
susu完成签到,获得积分10
17秒前
17秒前
葫芦娃发布了新的文献求助30
17秒前
19秒前
情怀应助Math4396采纳,获得10
19秒前
20秒前
20秒前
20秒前
王肖发布了新的文献求助10
22秒前
yinying完成签到,获得积分10
22秒前
华仔应助淡淡从安采纳,获得10
22秒前
23秒前
23秒前
LL发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
25秒前
26秒前
穿堂风完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797740
求助须知:如何正确求助?哪些是违规求助? 3343209
关于积分的说明 10314887
捐赠科研通 3059968
什么是DOI,文献DOI怎么找? 1679185
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150