Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

计算机科学 最优化问题 凸优化 正多边形 算法 数学优化 数学 几何学
作者
Stephen Boyd
出处
期刊:Foundations and trends in machine learning [Now Publishers]
被引量:13233
标识
DOI:10.1561/9781601984616
摘要

Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for ?1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, it discusses applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. It also discusses general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
预现ls发布了新的文献求助10
2秒前
打地鼠工人完成签到,获得积分10
2秒前
Ing完成签到,获得积分10
2秒前
3秒前
Ava应助啊哈哈哈哈采纳,获得10
5秒前
SciGPT应助韶华若锦采纳,获得10
6秒前
量子星尘发布了新的文献求助20
7秒前
大模型应助Polaris5989采纳,获得10
8秒前
8秒前
8秒前
未蓝完成签到,获得积分10
9秒前
wtdai完成签到,获得积分10
10秒前
10秒前
10秒前
1210xi发布了新的文献求助10
13秒前
hsyyk发布了新的文献求助30
13秒前
14秒前
薄年西完成签到,获得积分10
15秒前
15秒前
rrrrr完成签到,获得积分10
17秒前
17秒前
Jeamren完成签到,获得积分10
17秒前
yu完成签到,获得积分20
18秒前
18秒前
树枝完成签到,获得积分10
19秒前
蛋蛋1完成签到,获得积分10
20秒前
金金完成签到,获得积分10
21秒前
鳎mu发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
自然的曲奇完成签到 ,获得积分10
25秒前
研友_8KAmbn完成签到,获得积分20
25秒前
25秒前
复杂博完成签到,获得积分10
26秒前
十二完成签到 ,获得积分10
27秒前
28秒前
29秒前
liuliu完成签到 ,获得积分10
29秒前
yin完成签到,获得积分10
30秒前
yu发布了新的文献求助10
33秒前
精神世界完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4999691
求助须知:如何正确求助?哪些是违规求助? 4245202
关于积分的说明 13225454
捐赠科研通 4043090
什么是DOI,文献DOI怎么找? 2211929
邀请新用户注册赠送积分活动 1222306
关于科研通互助平台的介绍 1142349