Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals

灵敏度(控制系统) GSM演进的增强数据速率 抗药性 药品 抗性(生态学) 大数据 计算机科学 计算生物学 数据科学 数据挖掘 生物 人工智能 药理学 遗传学 工程类 生态学 电子工程
作者
Tao Zeng,Wanwei Zhang,Xiangtian Yu,Xiaoping Liu,Meiyi Li,Luonan Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:17 (4): 576-592 被引量:48
标识
DOI:10.1093/bib/bbv078
摘要

Big-data-based edge biomarker is a new concept to characterize disease features based on biomedical big data in a dynamical and network manner, which also provides alternative strategies to indicate disease status in single samples. This article gives a comprehensive review on big-data-based edge biomarkers for complex diseases in an individual patient, which are defined as biomarkers based on network information and high-dimensional data. Specifically, we firstly introduce the sources and structures of biomedical big data accessible in public for edge biomarker and disease study. We show that biomedical big data are typically 'small-sample size in high-dimension space', i.e. small samples but with high dimensions on features (e.g. omics data) for each individual, in contrast to traditional big data in many other fields characterized as 'large-sample size in low-dimension space', i.e. big samples but with low dimensions on features. Then, we demonstrate the concept, model and algorithm for edge biomarkers and further big-data-based edge biomarkers. Dissimilar to conventional biomarkers, edge biomarkers, e.g. module biomarkers in module network rewiring-analysis, are able to predict the disease state by learning differential associations between molecules rather than differential expressions of molecules during disease progression or treatment in individual patients. In particular, in contrast to using the information of the common molecules or edges (i.e.molecule-pairs) across a population in traditional biomarkers including network and edge biomarkers, big-data-based edge biomarkers are specific for each individual and thus can accurately evaluate the disease state by considering the individual heterogeneity. Therefore, the measurement of big data in a high-dimensional space is required not only in the learning process but also in the diagnosing or predicting process of the tested individual. Finally, we provide a case study on analyzing the temporal expression data from a malaria vaccine trial by big-data-based edge biomarkers from module network rewiring-analysis. The illustrative results show that the identified module biomarkers can accurately distinguish vaccines with or without protection and outperformed previous reported gene signatures in terms of effectiveness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助799采纳,获得10
刚刚
1秒前
阿橘完成签到,获得积分10
2秒前
传奇3应助风雨晴鸿采纳,获得10
2秒前
cc发布了新的文献求助10
2秒前
七七发布了新的文献求助30
2秒前
信徒完成签到,获得积分10
3秒前
moffy发布了新的文献求助10
3秒前
3秒前
yangzhang完成签到,获得积分10
3秒前
乐乐乐乐呀完成签到,获得积分10
4秒前
4秒前
ptsoup完成签到,获得积分10
6秒前
喵霸天下发布了新的文献求助10
6秒前
传奇3应助修辛采纳,获得10
6秒前
6秒前
9秒前
你呀完成签到,获得积分10
9秒前
10秒前
正直映萱发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
cc完成签到,获得积分10
11秒前
科研通AI5应助结实的栾采纳,获得10
12秒前
12秒前
任性的老四关注了科研通微信公众号
12秒前
qh0305完成签到,获得积分10
12秒前
研友_VZG7GZ应助爱睡午觉采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
深情安青应助风中访冬采纳,获得10
14秒前
15秒前
专注之双完成签到,获得积分10
15秒前
15秒前
科研狂人发布了新的文献求助10
15秒前
堪曼凝完成签到,获得积分10
15秒前
筱棠发布了新的文献求助10
16秒前
16秒前
芊芊发布了新的文献求助10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233466
求助须知:如何正确求助?哪些是违规求助? 3766944
关于积分的说明 11835578
捐赠科研通 3425258
什么是DOI,文献DOI怎么找? 1879794
邀请新用户注册赠送积分活动 932544
科研通“疑难数据库(出版商)”最低求助积分说明 839704