Characterization of the PEGylated Functional Upstream Domain Peptide (PEG-FUD): a Potent Fibronectin Assembly Inhibitor with Potential as an Anti-Fibrotic Therapeutic

聚乙二醇化 PEG比率 化学 生物化学 等温滴定量热法 分子生物学 效力 结合 亲和层析 聚乙二醇 体外 生物 经济 财务 数学分析 数学
作者
Pawel Zbyszynski,Bianca R. Tomasini-Johansson,Donna M. Peters,Glen S. Kwon
出处
期刊:Pharmaceutical Research [Springer Science+Business Media]
卷期号:35 (7) 被引量:8
标识
DOI:10.1007/s11095-018-2412-7
摘要

To develop PEGylated variants of pUR4/FUD (FUD), a fibronectin assembly inhibitor, using 10 kDa, 20 kDa, and 40 kDa PEGs to evaluate their binding affinity and inhibitory potency.The FUD peptide was recombinantly expressed, purified, and PEGylated at the N-terminus using 10 kDa, 20 kDa, and 40 kDa methoxy-PEG aldehyde. The PEGylates were purified and fractionated using ion-exchange chromatography. The molecular weight and degree of PEGylation of each conjugate was verified using MALDI-TOF. The binding affinity of each PEG-FUD conjugate was studied using isothermal titration colorimetry (ITC) and their inhibitory potency was characterized by a cell-based matrix assembly in vitro assay.The 10 kDa, 20 kDa, and 40 kDa PEG-FUD conjugates were synthesized and isolated in good purity as determined by HPLC analysis. Their molecular weight was consistent with attachment of a single PEG molecule to one FUD peptide. The binding affinity (Kd) and the fibronectin fibrillogenesis inhibitory potency (IC50) of all PEG-FUD conjugates remained nanomolar and unaffected by the addition of PEG.Retention of FUD fibronectin binding activity following PEGylation with three different PEG sizes suggest that PEG-FUD holds promise as an effective anti-fibrotic with therapeutic potential and a candidate for further pharmacokinetic and biodistribution studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小肥采纳,获得10
1秒前
1秒前
xqq完成签到,获得积分10
1秒前
牧长一完成签到 ,获得积分0
2秒前
3秒前
陈YX发布了新的文献求助10
5秒前
大模型应助热舞特采纳,获得10
5秒前
脑洞疼应助阳光铭媚采纳,获得10
6秒前
小刘恨香菜完成签到,获得积分10
8秒前
10秒前
CC发布了新的文献求助10
10秒前
xianhe完成签到,获得积分10
11秒前
16秒前
17秒前
胡桃完成签到,获得积分10
18秒前
18秒前
song完成签到,获得积分10
19秒前
Eurus发布了新的文献求助10
20秒前
远道发布了新的文献求助10
21秒前
22秒前
郑旭辉发布了新的文献求助10
22秒前
逍遥完成签到,获得积分10
23秒前
23秒前
田小姐发布了新的文献求助20
23秒前
25秒前
可爱的函函应助郑旭辉采纳,获得10
26秒前
26秒前
姚奋斗完成签到,获得积分10
26秒前
小二郎应助echo采纳,获得10
26秒前
咔滋脆鸡腿堡完成签到 ,获得积分10
27秒前
菟小鹿发布了新的文献求助10
27秒前
29秒前
思源应助支焱采纳,获得10
29秒前
大橙子发布了新的文献求助10
29秒前
郑旭辉完成签到,获得积分10
30秒前
Eurus完成签到,获得积分10
31秒前
顺顺科研发布了新的文献求助30
32秒前
ChenChen发布了新的文献求助10
33秒前
合适一斩发布了新的文献求助10
34秒前
斯文败类应助田小姐采纳,获得10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
Solving Nonlinear Equations with Newton's Method 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349