细胞凋亡
基因敲除
化学
氧化应激
脱甲基酶
细胞生物学
生物
生物化学
基因
表观遗传学
作者
Jianping Tang,Qianqian Su,Zhenkun Guo,Jinfu Zhou,Fuli Zheng,Guangxia Yu,Wenya Shao,Hong Hu,Siying Wu,Huangyuan Li
标识
DOI:10.1016/j.envpol.2021.118749
摘要
Cobalt is an environmental toxicant that is known to damage human health. However, the molecular mechanisms underlying cobalt-induced neurotoxicity have not been elucidated in detail. In the present research, we used human neuroglioma H4 cells as an in vitro model. Cells were exposed to CoCl2 (0, 100, 200, 400 μM) for 24 h. We performed m6A sequencing techniques and constructed FTO-knockdown/FTO-overexpressing cells to investigate the role of FTO-mediated m6A modification in regulating apoptosis following CoCl2 induced oxidative stress. Our study has shown CoCl2 exposure led to the decrease of demethylase FTO as well as elevated oxidative stress. However, NAC treatment could partly reverse the reduction of FTO expression as well as the degree of ROS via eliminating oxidative stress. Meanwhile, MeRIP-seq and RNA-seq further revealed the potential function m6A modification in regulating apoptosis. More importantly, KEGG pathway and Gene ontology (GO) analyses further elucidated that the differentially m6A-modified genes were aggregated in apoptosis-related pathways. Mechanistic analysis indicated that knockdown of FTO facilitated CoCl2-induced apoptosis via caspase activation and G1/S cell cycle arrest. Nevertheless, overexpression of FTO partly attenuated the increased apoptosis following CoCl2 exposure. More notably, we observed that FTO regulated apoptosis in an m6A-dependent manner. Therefore, our findings reveal that CoCl2 induced ROS affected the m6A modification of apoptosis-related genes by decreasing the expression of FTO, thereby resulting in the activation of apoptosis. These findings provide important insights into CoCl2-induced apoptosis and m6A modification and propose a novel strategy for studying environmental toxicant-related neurodegeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI