Performance evaluation of outlier detection techniques in production timeseries: A systematic review and meta-analysis

离群值 计算机科学 数据挖掘 时间序列 异常检测 人工智能 机器学习
作者
Hamzeh Alimohammadi,Shengnan Nancy Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:191: 116371-116371 被引量:20
标识
DOI:10.1016/j.eswa.2021.116371
摘要

Time-series data have been extensively collected and analyzed in many disciplines, such as stock market, medical diagnosis, meteorology, and oil and gas industry. Numerous data in these disciplines are sequence of observations measured as functions of time, which can be further used for different applications via analytical or data analytics techniques (e.g., to forecast future price, climate change, etc.). However, presence of outliers can cause significant uncertainties to interpretation results; hence, it is essential to remove the outliers accurately and efficiently before conducting any further analysis. A total of 17 techniques that belong to statistical, regression-based, and machine learning (ML) based categories for outlier detection in timeseries are applied to the oil and gas production data analysis. 15 of these methods are utilized for production data analysis for the first time. Two state-of-the-art and high-performance techniques are then selected for data cleaning which require minimum control and time complexity. Moreover, performances of these techniques are evaluated based on several metrics including the accuracy, precision, recall, F1 score, and Cohen’s Kappa to rank the techniques. Results show that eight unsupervised algorithms outperform the rest of the methods based on the synthetic case study with known outliers. For example, accuracies of the eight shortlisted methods are in the range of 0.83–0.99 with a precision between 0.83 and 0.98, compared to 0.65–0.82 and 0.07–0.77 for the others. In addition, ML-based techniques perform better than statistical techniques. Our experimental results on real field data further indicate that the k-nearest neighbor (KNN) and Fulford-Blasingame methods are superior to other outlier detection frameworks for outlier detection in production data, followed by four others including density-based spatial clustering of applications with noise (DBSCAN), and angle-based outlier detection (ABOD). Even though the techniques are examined with oil and gas production data, but the same data cleaning workflow can be used to detect timeseries’ outliers in other disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cloud发布了新的文献求助30
1秒前
WXJ发布了新的文献求助10
1秒前
2秒前
2秒前
y呓语发布了新的文献求助30
2秒前
Xlx完成签到,获得积分20
2秒前
毛毛完成签到,获得积分10
3秒前
科研踏寻完成签到,获得积分10
3秒前
HBY完成签到,获得积分10
3秒前
3秒前
一一yi完成签到,获得积分10
4秒前
daixan89完成签到 ,获得积分10
4秒前
4秒前
糖优优完成签到,获得积分10
4秒前
en发布了新的文献求助10
4秒前
刘雯完成签到,获得积分10
4秒前
阔达的惠完成签到,获得积分10
4秒前
在水一方应助顺心绮兰采纳,获得10
4秒前
所所应助晚风采纳,获得10
4秒前
momo完成签到,获得积分10
5秒前
renxiaoting发布了新的文献求助10
5秒前
J_Man发布了新的文献求助10
5秒前
科研通AI2S应助炫炫炫采纳,获得10
5秒前
5秒前
xin完成签到 ,获得积分10
6秒前
臭臭发布了新的文献求助10
6秒前
zl发布了新的文献求助10
7秒前
卡农完成签到,获得积分10
8秒前
鸣笛应助是龙龙呀采纳,获得10
8秒前
she完成签到,获得积分10
9秒前
maonaiqian发布了新的文献求助10
9秒前
iNk应助只只采纳,获得20
9秒前
9秒前
10秒前
J_Man完成签到,获得积分10
10秒前
快乐大炮完成签到 ,获得积分20
10秒前
10秒前
fmsai发布了新的文献求助10
11秒前
WXJ完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910881
求助须知:如何正确求助?哪些是违规求助? 3456542
关于积分的说明 10890249
捐赠科研通 3182836
什么是DOI,文献DOI怎么找? 1759359
邀请新用户注册赠送积分活动 850855
科研通“疑难数据库(出版商)”最低求助积分说明 792293