Curvature-Adaptive Meta-Learning for Fast Adaptation to Manifold Data

曲率 歧管(流体力学) 计算机科学 人工智能 初始化 歧管对齐 常曲率 欧几里得空间 非线性降维 算法 数学 几何学 降维 数学分析 机械工程 工程类 程序设计语言
作者
Zhi Gao,Yuwei Wu,Mehrtash Harandi,Yingmin Jia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 1545-1562 被引量:4
标识
DOI:10.1109/tpami.2022.3164894
摘要

Meta-learning methods are shown to be effective in quickly adapting a model to novel tasks. Most existing meta-learning methods represent data and carry out fast adaptation in euclidean space. In fact, data of real-world applications usually resides in complex and various Riemannian manifolds. In this paper, we propose a curvature-adaptive meta-learning method that achieves fast adaptation to manifold data by producing suitable curvature. Specifically, we represent data in the product manifold of multiple constant curvature spaces and build a product manifold neural network as the base-learner. In this way, our method is capable of encoding complex manifold data into discriminative and generic representations. Then, we introduce curvature generation and curvature updating schemes, through which suitable product manifolds for various forms of data manifolds are constructed via few optimization steps. The curvature generation scheme identifies task-specific curvature initialization, leading to a shorter optimization trajectory. The curvature updating scheme automatically produces appropriate learning rate and search direction for curvature, making a faster and more adaptive optimization paradigm compared to hand-designed optimization schemes. We evaluate our method on a broad set of problems including few-shot classification, few-shot regression, and reinforcement learning tasks. Experimental results show that our method achieves substantial improvements as compared to meta-learning methods ignoring the geometry of the underlying space.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研科研还是科研完成签到,获得积分10
1秒前
如梦如画完成签到,获得积分10
1秒前
2秒前
imss1发布了新的文献求助10
4秒前
困困发布了新的文献求助10
4秒前
所所应助山楂采纳,获得10
5秒前
Lucas应助yuan采纳,获得10
5秒前
SciGPT应助辛勤飞凤采纳,获得10
6秒前
7秒前
往之发布了新的文献求助10
7秒前
fhbsdufh发布了新的文献求助10
7秒前
zx598376321完成签到,获得积分10
8秒前
正好完成签到,获得积分10
8秒前
9秒前
虎虎虎完成签到,获得积分10
9秒前
段段砖完成签到 ,获得积分10
9秒前
10秒前
高兴断秋完成签到,获得积分10
10秒前
Ava应助ZHEN采纳,获得10
10秒前
武雨寒发布了新的文献求助10
11秒前
十个勤天完成签到,获得积分10
11秒前
LeonZhang发布了新的文献求助10
12秒前
YY发布了新的文献求助10
12秒前
易水完成签到 ,获得积分10
12秒前
百里丹珍完成签到,获得积分10
13秒前
科研通AI5应助Huyyy采纳,获得10
13秒前
qq发布了新的文献求助10
14秒前
顾矜应助qaz采纳,获得10
16秒前
辛勤飞凤发布了新的文献求助10
18秒前
轻声看雨发布了新的文献求助10
18秒前
铃儿响叮当完成签到 ,获得积分10
19秒前
optical完成签到,获得积分10
19秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
魏冰应助科研通管家采纳,获得10
21秒前
CHEN应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825216
求助须知:如何正确求助?哪些是违规求助? 3367485
关于积分的说明 10446072
捐赠科研通 3086874
什么是DOI,文献DOI怎么找? 1698343
邀请新用户注册赠送积分活动 816688
科研通“疑难数据库(出版商)”最低求助积分说明 769937