亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction

计算机科学 卷积神经网络 自编码 人工智能 噪音(视频) 深度学习 实时计算 故障检测与隔离 模式识别(心理学) 工程类 数据挖掘 断层(地质) 地震学 执行机构 地质学 图像(数学)
作者
Debasish Jana,Jayant Patil,Sudheendra Herkal,Satish Nagarajaiah,Leonardo Dueñas‐Osorio
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:169: 108723-108723 被引量:98
标识
DOI:10.1016/j.ymssp.2021.108723
摘要

Increasing advances in sensing technologies and analytics have led to the proliferation of sensors to monitor structural and infrastructural systems. Accurate sensor data can provide information about structural health, aid in prognosis, and help calculate forces for vibration control. However, sensors are susceptible to faults such as loss of data, random noise, bias, drift, etc., due to the aging of sensors, defects, or environmental factors. Although traditional signal processing techniques can detect and isolate faults and reconstruct corrupt or missing sensor data, they demand significant human intervention. The continuous rise in computational power and demonstrated efficacy in numerous domains motivates the use of deep learning to minimize human-in-the-loop techniques. In this work, we introduce a novel, deep learning framework for linear systems with time-invariant parameters that identifies the presence and type of fault in sensor data, location of the faulty sensor and subsequently reconstructs the correct sensor data for fault detection, fault classification, and reconstruction. In our framework, first, a Convolutional Neural Network (CNN) is used to detect the presence of a fault and identify its type. Next, a suite of individually trained Convolutional Autoencoder (CAE) networks corresponding to each type of fault are employed for reconstruction. We demonstrate the efficacy of our framework to address both single and multiple sensor faults in synthetically generated data of a simple shear-type structure and experimentally measured data from a simplified arch bridge. While the framework is agnostic of fault-type, we demonstrate its use for four types of fault namely, missing, spiky, random, and drift. For both simulated and experimental datasets with a single fault, our models performed well, achieving 100% accuracy in faulty sensor localization, more than 98.7% accuracy in fault type detection, and more than 99% accuracy in reconstruction. Our framework can also address multiple concurrent faults with similar accuracy. We empirically demonstrate that our proposed framework performs better than other state-of-the-art techniques in terms of computational efficiency with comparable accuracy. Adoption of our framework in online structural health monitoring applications can lead to minimal disruption to monitoring processes, reduced downtime for structures and infrastructure while simultaneously reducing uncertainty and improving the quality of sensor data for historical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空空伊完成签到,获得积分10
9秒前
czj完成签到 ,获得积分10
18秒前
英俊的铭应助zzzxh采纳,获得10
18秒前
23秒前
breeze发布了新的文献求助30
26秒前
友好的妙松完成签到 ,获得积分10
27秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
38秒前
汉堡包应助玉山小霸王采纳,获得10
39秒前
holland完成签到 ,获得积分10
39秒前
43秒前
49秒前
49秒前
zzzxh发布了新的文献求助10
53秒前
君知完成签到,获得积分10
1分钟前
偷看星星完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助希格玻色子采纳,获得10
1分钟前
无语的安白应助木子采纳,获得20
1分钟前
Dr.Lawrence完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
不去明知山完成签到 ,获得积分10
2分钟前
书中月发布了新的文献求助10
2分钟前
开心蛋挞发布了新的文献求助10
2分钟前
2分钟前
dingheng发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
dingheng完成签到,获得积分10
2分钟前
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
桐桐应助科研通管家采纳,获得30
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540490
捐赠科研通 3106002
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264