Graph-based reinforcement learning for discrete cross-section optimization of planar steel frames

强化学习 计算机科学 嵌入 水准点(测量) 特征(语言学) 图形 粒子群优化 平面的 帧(网络) 横截面(物理) 算法 数学优化 人工智能 数学 理论计算机科学 哲学 物理 量子力学 计算机图形学(图像) 地理 语言学 大地测量学 电信
作者
Kazuki Hayashi,Makoto Ohsaki
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:51: 101512-101512 被引量:50
标识
DOI:10.1016/j.aei.2021.101512
摘要

A combined method of graph embedding (GE) and reinforcement learning (RL) is developed for discrete cross-section optimization of planar steel frames, in which the section size of each member is selected from a prescribed list of standard sections. The RL agent aims to minimize the total structural volume under various practical constraints. GE is a method for extracting features from data with irregular connectivity. While most of the existing GE methods aim at extracting node features, an improved GE formulation is developed for extracting features of edges associated with members in this study. Owing to the proposed GE operations, the agent is capable of grasping the structural property of columns and beams considering their connectivity in a frame with an arbitrary size as feature vectors of the same size. Using the feature vectors, the agent is trained to estimate the accurate return associated with each action and to take proper actions on which members to reduce or increase their size using an RL algorithm. The applicability of the proposed method is versatile because various frames different in the numbers of nodes and members can be used for both training and application phases. In the numerical examples, the trained agents outperform a particle swarm optimization method as a benchmark in terms of both computational cost and design quality for cross-sectional design changes; the agents successfully assign reasonable cross-sections considering the geometry, connectivity, and support and load conditions of the frames.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
michael发布了新的文献求助30
1秒前
小蘑菇应助自由元冬采纳,获得10
2秒前
3秒前
3秒前
Akim应助科研通管家采纳,获得10
4秒前
ucas应助科研通管家采纳,获得10
4秒前
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
zoe发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
azntyrvt应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
ucas应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Joel发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
asd应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
ucas应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
tiptip应助科研通管家采纳,获得10
4秒前
沟壑发布了新的文献求助10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
冷酷孤风完成签到,获得积分10
5秒前
asd应助科研通管家采纳,获得30
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
azntyrvt应助科研通管家采纳,获得10
5秒前
芊芊完成签到 ,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002