数学
组合数学
拉普拉斯矩阵
邻接矩阵
代数连通性
拉普拉斯算子
多重性(数学)
多数
度矩阵
光谱(功能分析)
顶点(图论)
对角矩阵
对角线的
图形
邻接表
离散数学
图形功率
折线图
物理
数学分析
量子力学
几何学
作者
Robert Grone,Russell Merris
标识
DOI:10.1137/s0895480191222653
摘要
Let G be a graph. Denote by $D( G )$ the diagonal matrix of its vertex degrees and by $A( G )$ its adjacency matrix. Then $L( G ) = D( G ) - A( G )$ is the Laplacian matrix of G. The first section of this paper is devoted to properties of Laplacian integral graphs, those for which the Laplacian spectrum consists entirely of integers. The second section relates the degree sequence and the Laplacian spectrum through majorization. The third section introduces the notion of a d-cluster, using it to bound the multiplicity of d in the spectrum of $L( G )$.
科研通智能强力驱动
Strongly Powered by AbleSci AI