已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cross-domain road detection based on global-local adversarial learning framework from very high resolution satellite imagery

计算机科学 人工智能 对抗制 领域(数学分析) 卷积神经网络 特征(语言学) 深度学习 一致性(知识库) 一般化 模式识别(心理学) 目标检测 机器学习 计算机视觉 哲学 数学分析 语言学 数学
作者
Xiaoyan Lu,Yanfei Zhong,Zhuo Zheng,Junjue Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:180: 296-312 被引量:31
标识
DOI:10.1016/j.isprsjprs.2021.08.018
摘要

Road detection based on convolutional neural networks (CNNs) has achieved remarkable performances for very high resolution (VHR) remote sensing images. However, this approach relies on massive annotated samples, and the problem of limited generalization for unseen images still remains. The manual pixel-level labeling process is also extremely time-consuming, and the performance of CNNs degrades significantly when there is a domain gap between the training and test images. In this paper, to address this problem, a global-local adversarial learning (GOAL) framework is proposed for cross-domain road detection. On the one hand, considering the spatial information similarities between the source and target domains, feature space driven adversarial learning is applied to explore the shared features across domains. On the other hand, the complex background of VHR remote sensing images, such as the occlusions and shadows of trees and buildings, makes some roads easy to recognize, while others are much more difficult. However, the traditional global adversarial learning approach cannot guarantee local semantic consistency. Therefore, a local alignment operation is introduced, which adaptively adjusts the weight of the adversarial loss according to the road recognition difficulty. Extensive experiments were conducted on different road datasets, including two public competition road datasets—SpaceNet and DeepGlobe—and our own large-scale annotated images from four cities: Boston, Birmingham, Shanghai, and Wuhan. The experimental results show that the proposed GOAL framework can clearly improve the cross-domain road detection performance, without any annotation of the target domain images. For instance, taking SpaceNet road dataset as the source domain, compared with the no adaptation method, the IOU performance of GOAL framework is increased by 14.36%, 5.49%, 4.51%, 5.63% and 15.14% on DeepGlobe, Boston, Birmingham, Shanghai, and Wuhan images, respectively, which demonstrates its strong generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Reese完成签到 ,获得积分10
3秒前
rd发布了新的文献求助10
3秒前
Atec发布了新的文献求助10
4秒前
6秒前
shirley完成签到,获得积分10
12秒前
洋洋爱吃枣完成签到 ,获得积分10
14秒前
科研通AI5应助火星上紫山采纳,获得10
17秒前
浩西完成签到 ,获得积分10
19秒前
Akim应助renxuda采纳,获得10
20秒前
吕佩给吕佩的求助进行了留言
22秒前
rrrrrrry发布了新的文献求助10
23秒前
oleskarabach发布了新的文献求助10
23秒前
青糯完成签到 ,获得积分10
24秒前
心灵美千秋完成签到 ,获得积分10
25秒前
lemon完成签到 ,获得积分10
27秒前
饱满跳跳糖完成签到,获得积分10
28秒前
研友_8y2G0L完成签到,获得积分10
28秒前
29秒前
wenhao完成签到 ,获得积分10
32秒前
苗条一兰完成签到,获得积分10
34秒前
虚心远航发布了新的文献求助10
35秒前
zxd完成签到,获得积分10
35秒前
36秒前
苹果从菡完成签到,获得积分10
42秒前
lili完成签到 ,获得积分10
43秒前
真真完成签到 ,获得积分10
43秒前
45秒前
虚心远航完成签到,获得积分10
46秒前
星辰大海应助糊涂的大象采纳,获得10
47秒前
47秒前
minghao完成签到,获得积分10
48秒前
sasa完成签到,获得积分10
48秒前
深情安青应助狮子清明尊采纳,获得10
55秒前
糊涂的大象完成签到,获得积分20
56秒前
59秒前
xuli-888完成签到,获得积分10
1分钟前
1分钟前
MSY发布了新的文献求助10
1分钟前
FashionBoy应助阿巴阿巴采纳,获得10
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367265
关于积分的说明 10444831
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698062
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848