已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How to grow new applications out of old research? Evidence from firm cumulative investments in deep learning

繁殖(生物学) 产业组织 背景(考古学) 业务 经济 深度学习 技术开发 营销 技术变革 过程(计算) 休克(循环) 累积效应 深度整合 补充资产
作者
Xirong Shen
出处
期刊:Strategic Management Journal [Wiley]
标识
DOI:10.1002/smj.70045
摘要

Abstract Research Summary Firm technological research has the potential to spawn multiple applications. Despite recognizing such potential, past literature disagrees on the process through which firms discover and grow new applications out of their past technological research. I examine this question in the context of deep learning, taking a question‐driven approach. Difference‐in‐difference analysis suggests that firms radically increased cumulative investments in past deep learning research upon signals indicating elevated application potential of deep learning. Furthermore, rather than investing in proprietary efforts, firms disclosed their cumulative development trajectories to engage external innovation efforts from which they learn and build. Grounded in these findings, I propose that the discovery and growth of new applications of past research entails unfolding innovation interdependence which motivates firms to co‐evolve with external innovators. Managerial Summary Firm technological research has the potential to spawn multiple applications. This article examines how firms cumulatively invest in their past technological research to grow new applications in the context of deep learning. Employing a difference‐in‐difference approach, analysis suggests that firms radically increased cumulative investments in deep learning after a shock elevating the application potential of their past deep‐learning research. Furthermore, firms publicly disclosed their cumulative development trajectories to attract innovation efforts from application sectors while actively learning from the attracted efforts to innovate further. These findings suggest that firms engaged, leveraged and co‐evolved with external innovation efforts to discover and grow new applications of their past research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FashionBoy应助Drorix采纳,获得10
2秒前
李健的小迷弟应助花陵采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
yhhhs完成签到 ,获得积分10
5秒前
sxh发布了新的文献求助10
6秒前
7秒前
8秒前
11秒前
皮卡丘完成签到 ,获得积分0
11秒前
呵呵啊哈完成签到,获得积分10
12秒前
大模型应助tg2024采纳,获得10
12秒前
ye发布了新的文献求助10
13秒前
反复发作完成签到 ,获得积分10
14秒前
yl完成签到,获得积分10
16秒前
不想活了发布了新的文献求助10
16秒前
传奇3应助欣喜灯泡采纳,获得10
16秒前
ywayw完成签到,获得积分10
19秒前
19秒前
兴奋元冬完成签到,获得积分10
20秒前
23秒前
24秒前
天天发布了新的文献求助10
26秒前
26秒前
田様应助ShengzhangLiu采纳,获得10
27秒前
30秒前
Baishikewu发布了新的文献求助10
30秒前
31秒前
tg2024发布了新的文献求助10
33秒前
33秒前
落寞向松发布了新的文献求助10
36秒前
ShengzhangLiu发布了新的文献求助10
39秒前
无极微光应助王富贵采纳,获得20
40秒前
852应助瓶盖采纳,获得10
40秒前
田様应助读书的时候采纳,获得30
41秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696321
求助须知:如何正确求助?哪些是违规求助? 5106712
关于积分的说明 15218683
捐赠科研通 4852289
什么是DOI,文献DOI怎么找? 2603056
邀请新用户注册赠送积分活动 1554697
关于科研通互助平台的介绍 1512760