催化作用
电合成
化学
镍
过氧化氢
过渡金属
无机化学
密度泛函理论
电催化剂
吸附
光化学
选择性
贵金属
制氢
过电位
氧化还原
电子转移
配体(生物化学)
氢
铂金
基质(水族馆)
均相催化
反应机理
化学反应
材料科学
轨道杂交
纳米颗粒
多相催化
氧化加成
化学工程
反应速率
析氧
化学键
组合化学
氧气
分子轨道
作者
Li‐Jing Peng,Xu Cao,Xinyuan Cao,Jun-Hao Wan,Jun-Hua Zhou,Gongming Wang,Xian Wei Liu
出处
期刊:Small
[Wiley]
日期:2025-11-18
卷期号:: e12246-e12246
标识
DOI:10.1002/smll.202512246
摘要
Abstract Electrosynthesis of hydrogen peroxide (H 2 O 2 ) via the two‐electron oxygen reduction reaction offers a sustainable method for chemical manufacture. However, catalysts in acidic media still face inherent trade‐offs between activity and selectivity. Herein, a ligand‐field–tailoring strategy is introduced that uses a nickel‐porphyrin molecular precursor and a pyrolysis‐driven competitive coordination process to precisely program the local environment of single‐atom Ni sites. The introduction of Ni─O bonds weakens the ligand field and increases electron pairing, promoting a transition from low‐spin to intermediate‐spin states at the Ni center. Density functional theory (DFT) calculations reveal a negative correlation between the magnetization and both OOH adsorption energy (ΔG OOH ) and orbital interaction strength. In the intermediate‐spin state, incompletely occupied dz 2 orbitals facilitate moderate OOH binding, facilitating H 2 O 2 production. Furthermore, spin polarization accelerates electron transfer to OOH, reducing the energy barrier of the rate‐determining step and optimizing reaction kinetics. The catalyst exhibits an exceptional H 2 O 2 production rate (6.4 mol g −1 h −1 ) and selectivity (>95%) under acidic conditions, outperforming most transition metal‐based catalysts and even many noble metal systems. This study unveils the role of spin‐state modulation in optimizing electrocatalysis, opening new avenues for designing high‐performance catalysts for H 2 O 2 synthesis and other catalytic reactions involving oxygen intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI