Evaluation and prediction of transportation resilience under extreme weather events: A diffusion graph convolutional approach

弹性(材料科学) 极端天气 计算机科学 图形 智能交通系统 大数据 数据挖掘 运筹学 运输工程 工程类 理论计算机科学 气候变化 生态学 生物 热力学 物理
作者
Hongwei Wang,Zhong‐Ren Peng,Dongsheng Wang,Yuan Meng,Tianlong Wu,Weili Sun,Qing-Chang Lu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:115: 102619-102619 被引量:101
标识
DOI:10.1016/j.trc.2020.102619
摘要

Resilience offers a broad social-technical framework to deal with breakdown, response and recovery of transportation networks adapting to various disruptions. Although current research works model and simulate transportation resilience from different perspectives, the real-world resilience of urban road network is still unclear. In this paper, a novel end to end deep learning framework is proposed to estimate and predict the spatiotemporal patterns of transportation resilience under extreme weather events. Diffusion Graph Convolutional Recurrent Neural Network and a dynamic-capturing algorithm of transportation resilience jointly form the backbone of this framework. The presented framework can capture the spatiotemporal dependencies of urban road network and evaluate transportation resilience based on real-world big data, including on-demand ride services data provided by DiDi Chuxing and grid meteorological data. Results show that aggregate data of related precipitation events could be used for transportation resilience modeling under extreme weather events when facing sample imbalance problem due to limited historical disaster data. In terms of observed transportation resilience, transportation network demonstrates different characteristics between sparse network and dense network, as well as general precipitation events and extreme weather events. The response time is double or triple of the recovery time, and an elastic limit exists in the recovery process of network resilience. In terms of resilience prediction, the proposed model outperforms competitors by incorporating topological information and has better predictions of the system performance degradation than other resilience indices. The above results could assist researchers and policy makers clearly understand the real-world resilience of urban road networks in both theory and practice, and take effective responses under emergent disruptive events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sia完成签到,获得积分10
2秒前
CUN完成签到,获得积分10
8秒前
Nick完成签到,获得积分10
10秒前
鹤鸣完成签到 ,获得积分10
12秒前
yiyy完成签到,获得积分10
12秒前
蝈蝈完成签到,获得积分10
15秒前
hjygzv完成签到,获得积分10
16秒前
馅饼完成签到,获得积分10
17秒前
大模型应助yiyy采纳,获得10
19秒前
听寒完成签到,获得积分10
25秒前
27秒前
兜兜揣满糖完成签到 ,获得积分10
28秒前
30秒前
大猪完成签到,获得积分10
30秒前
善学以致用应助T拐拐采纳,获得10
31秒前
bigheadear完成签到,获得积分10
32秒前
天将明完成签到 ,获得积分10
32秒前
充满怪兽的世界完成签到,获得积分10
35秒前
demom完成签到 ,获得积分10
36秒前
37秒前
木之尹完成签到 ,获得积分10
38秒前
T拐拐发布了新的文献求助10
41秒前
43秒前
LJ发布了新的文献求助10
47秒前
灰太狼大王完成签到 ,获得积分10
47秒前
畸你太美完成签到 ,获得积分10
48秒前
水星完成签到 ,获得积分10
48秒前
DaSheng完成签到,获得积分10
49秒前
胖一达完成签到 ,获得积分10
50秒前
温暖的鸿完成签到 ,获得积分10
54秒前
梦回唐朝完成签到 ,获得积分10
55秒前
CompJIN发布了新的文献求助10
56秒前
慕青应助daladidala采纳,获得10
59秒前
科研小白完成签到 ,获得积分10
1分钟前
LORI完成签到,获得积分10
1分钟前
捞鱼完成签到,获得积分10
1分钟前
1分钟前
daladidala发布了新的文献求助10
1分钟前
ironsilica完成签到,获得积分10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385599
关于积分的说明 10540781
捐赠科研通 3106177
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308