Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience

医学 图像质量 深度学习 人工智能 迭代重建 放射科 腹部计算机断层扫描 图像(数学) 核医学 医学物理学 计算机科学
作者
Corey T. Jensen,Xinming Liu,Eric P. Tamm,Adam G. Chandler,Jia Sun,Ajaykumar C. Morani,Sanaz Javadi,Nicolaus A. Wagner‐Bartak
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:215 (1): 50-57 被引量:182
标识
DOI:10.2214/ajr.19.22332
摘要

OBJECTIVE. The purpose of this study was to perform quantitative and qualitative evaluation of a deep learning image reconstruction (DLIR) algorithm in contrast-enhanced oncologic CT of the abdomen. MATERIALS AND METHODS. Retrospective review (April-May 2019) of the cases of adults undergoing oncologic staging with portal venous phase abdominal CT was conducted for evaluation of standard 30% adaptive statistical iterative reconstruction V (30% ASIR-V) reconstruction compared with DLIR at low, medium, and high strengths. Attenuation and noise measurements were performed. Two radiologists, blinded to examination details, scored six categories while comparing reconstructions for overall image quality, lesion diagnostic confidence, artifacts, image noise and texture, lesion conspicuity, and resolution. RESULTS. DLIR had a better contrast-to-noise ratio than 30% ASIR-V did; high-strength DLIR performed the best. High-strength DLIR was associated with 47% reduction in noise, resulting in a 92-94% increase in contrast-to-noise ratio compared with that of 30% ASIR-V. For overall image quality and image noise and texture, DLIR scored significantly higher than 30% ASIR-V with significantly higher scores as DLIR strength increased. A total of 193 lesions were identified. The lesion diagnostic confidence, conspicuity, and artifact scores were significantly higher for all DLIR levels than for 30% ASIR-V. There was no significant difference in perceived resolution between the reconstruction methods. CONCLUSION. Compared with 30% ASIR-V, DLIR improved CT evaluation of the abdomen in the portal venous phase. DLIR strength should be chosen to balance the degree of desired denoising for a clinical task relative to mild blurring, which increases with progressively higher DLIR strengths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
yuaner发布了新的文献求助10
1秒前
兴奋新烟发布了新的文献求助30
1秒前
无花果应助小醋采纳,获得10
2秒前
舒心砖头发布了新的文献求助30
3秒前
4秒前
URB7完成签到,获得积分10
5秒前
邱寻绿发布了新的文献求助10
5秒前
深情安青应助负责纲采纳,获得10
5秒前
jenna完成签到,获得积分10
6秒前
华仔应助yuaner采纳,获得10
6秒前
那新完成签到,获得积分10
8秒前
10秒前
10秒前
13秒前
兴奋新烟完成签到,获得积分20
13秒前
蟹黄鸭发布了新的文献求助10
13秒前
chhzz完成签到 ,获得积分10
16秒前
Chance发布了新的文献求助30
17秒前
舒心砖头完成签到,获得积分20
18秒前
负责纲发布了新的文献求助10
19秒前
幸福的小霜完成签到,获得积分10
19秒前
20秒前
Yu完成签到 ,获得积分10
22秒前
23秒前
芝麻完成签到,获得积分10
24秒前
25秒前
徐福上完成签到 ,获得积分10
25秒前
25秒前
深情寒蕾发布了新的文献求助10
25秒前
科研通AI5应助hhz采纳,获得10
27秒前
芮安的白丁完成签到 ,获得积分10
27秒前
f1mike110发布了新的文献求助10
30秒前
陈鹿华发布了新的文献求助10
30秒前
31秒前
31秒前
33秒前
香蕉觅云应助舒服的摇伽采纳,获得10
33秒前
34秒前
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847196
求助须知:如何正确求助?哪些是违规求助? 3389679
关于积分的说明 10558125
捐赠科研通 3109956
什么是DOI,文献DOI怎么找? 1714105
邀请新用户注册赠送积分活动 825079
科研通“疑难数据库(出版商)”最低求助积分说明 775216