A Detailed Review on Decision Tree and Random Forest

随机森林 决策树 树(集合论) 计算机科学 林业 数学 地理 人工智能 组合数学
作者
Bhushan Talekar
出处
期刊:Bioscience biotechnology research communications [Society for Science and Nature]
卷期号:13 (14): 245-248 被引量:65
标识
DOI:10.21786/bbrc/13.14/57
摘要

The decision tree method works by repeatedly dividing the location of features into imaginary limb regions so that each imaginary location provides a basis for making a different approximation.The decision tree system in existence so far applies to various future tasks such as classification and regression.These methods are popular in the field of data science with various benefits.This is due to limitations such as instability of predictions before slight changes in data, and this leads to a major change in the structure of the decision-making tree and has detrimental effects in terms of forecasting.On the other hand, to improve the prediction accuracy of a single base classifier or regressor, multiple decision trees are given parallel training for forecasting purposes and are known as random forests.The random forest technique is an ensemble methods, it comprises of several decision tree which are trained on the subset of data or with the feature subspace, once all the tree are trained, their results are combined together for the purpose of prediction.As random forest is more stable than a decision tree it become more popular in the field of data science and machine learning.In this paper, we had provided an detailed introduction of the decision tree methods and random forest method.Also, how they works and for which type of problem they are suitable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyq应助揍个大西瓜采纳,获得10
刚刚
半生半熟完成签到,获得积分10
2秒前
摸鱼鱼发布了新的文献求助10
2秒前
明理问柳完成签到,获得积分10
2秒前
清脆的秋柔完成签到,获得积分10
3秒前
雨柏完成签到 ,获得积分10
3秒前
3秒前
张倩完成签到,获得积分10
3秒前
快乐滑板发布了新的文献求助10
3秒前
科研通AI5应助高翎溪采纳,获得10
3秒前
加湿器应助Croissant采纳,获得30
4秒前
4秒前
GinFF发布了新的文献求助10
5秒前
失眠夏山发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI5应助yanxiaoting采纳,获得50
7秒前
英姑应助zzx采纳,获得10
7秒前
小屋完成签到,获得积分10
9秒前
ding发布了新的文献求助10
9秒前
北北完成签到,获得积分20
10秒前
步步发布了新的文献求助20
10秒前
平常映雁完成签到,获得积分10
10秒前
11秒前
11秒前
烟花应助coco采纳,获得10
11秒前
hjyylab应助dd采纳,获得10
11秒前
是滴是滴发布了新的文献求助10
11秒前
Orange应助稳重道消采纳,获得10
12秒前
万能图书馆应助Tao采纳,获得10
12秒前
12秒前
yyh完成签到,获得积分20
12秒前
高乐高发布了新的文献求助10
13秒前
14秒前
14秒前
斯文芷荷完成签到,获得积分20
14秒前
爆米花应助jiangtao采纳,获得10
14秒前
聪明语芹发布了新的文献求助10
15秒前
大饼卷肉发布了新的文献求助10
16秒前
明明完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841290
求助须知:如何正确求助?哪些是违规求助? 3383379
关于积分的说明 10529293
捐赠科研通 3103468
什么是DOI,文献DOI怎么找? 1709269
邀请新用户注册赠送积分活动 823044
科研通“疑难数据库(出版商)”最低求助积分说明 773769