Fault diagnosis for mechanical system using dynamic Bayesian network

动态贝叶斯网络 贝叶斯网络 断层(地质) 组分(热力学) 计算机科学 可靠性(半导体) 贝叶斯概率 机械系统 数据挖掘 人工智能 功率(物理) 物理 量子力学 地震学 热力学 地质学
作者
Tian Yang Pang,Yu Tian,Bi Feng Song
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1043 (3): 032062-032062
标识
DOI:10.1088/1757-899x/1043/3/032062
摘要

Abstract The present study focuses on the fault diagnosis of mechanical systems. Mechanical systems are considered with interconnected components that work together to achieve a common function or purpose. On the one hand, the fault diagnosis result is affected by strong dependence between each component. One the other hand, diagnostic results may be different at different time slices because of the performance degradation of components when the same fault symptoms are given. To deal with these problems in diagnosis, a dynamic Bayesian network (DBN) model is proposed. First, series and parallel systems are converted to a Bayesian network. And the relationship between components and reliability of the system is expressed by the Bayesian network. Then, the dynamic Bayesian network is established to model the dynamic degradation of components in a system under additional information by using the wear data. The parameters of the model are estimated by historical data. Finally, a case is investigated to verify the proposed model in this study. Fault diagnosis is conducted through a backward analysis of the DBN model proposed, and the weakest component is identified. The dynamic probabilities of the mechanical system are obtained through forwarding analysis of the DBN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡志飞完成签到,获得积分10
刚刚
爬不起来发布了新的文献求助10
刚刚
镜哥完成签到,获得积分10
1秒前
2秒前
Dr.Zou完成签到,获得积分10
2秒前
wst发布了新的文献求助10
3秒前
3秒前
dsjbk发布了新的文献求助10
4秒前
一只小黑胖关注了科研通微信公众号
4秒前
7秒前
卷卷发布了新的文献求助15
7秒前
7秒前
狂野的初晴完成签到,获得积分20
8秒前
9秒前
Orange应助呆萌的秋天采纳,获得10
10秒前
WUHUANGWANSUI完成签到,获得积分20
10秒前
缓慢的可乐完成签到,获得积分10
10秒前
传奇3应助木木采纳,获得10
11秒前
似宁完成签到,获得积分10
12秒前
英姑应助Trista0036采纳,获得10
14秒前
万能图书馆应助tjfwg采纳,获得10
16秒前
热热带汤发布了新的文献求助10
16秒前
Research完成签到 ,获得积分10
17秒前
fd完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
21秒前
隐形曼青应助cui采纳,获得10
21秒前
扶光完成签到 ,获得积分10
22秒前
22秒前
dsjbk完成签到,获得积分20
23秒前
所所应助朴素的荠采纳,获得10
25秒前
25秒前
huahua发布了新的文献求助10
26秒前
谢书繁发布了新的文献求助10
27秒前
27秒前
昔我依依发布了新的文献求助10
28秒前
yingying完成签到,获得积分10
28秒前
wpeng326完成签到,获得积分10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123