计算机科学
预处理器
功能磁共振成像
工作流程
软件
人工智能
鉴定(生物学)
模式识别(心理学)
协议(科学)
数据挖掘
任务(项目管理)
机器学习
神经科学
数据库
医学
植物
替代医学
管理
病理
经济
生物
程序设计语言
作者
Oscar Estéban,Rastko Ćirić,Karolina Finc,Ross Blair,Christopher J. Markiewicz,Craig A. Moodie,James D. Kent,Mathias Goncalves,Elizabeth DuPré,Daniel E. P. Gomez,Zhifang Ye,Taylor Salo,Romain Valabrègue,Inge K. Amlien,Franziskus Liem,Nir Jacoby,Hrvoje Stojić,Matthew Cieslak,Sebastian Urchs,Yaroslav O. Halchenko
出处
期刊:Nature Protocols
[Nature Portfolio]
日期:2020-06-08
卷期号:15 (7): 2186-2202
被引量:252
标识
DOI:10.1038/s41596-020-0327-3
摘要
Functional magnetic resonance imaging (fMRI) is a standard tool to investigate the neural correlates of cognition. fMRI noninvasively measures brain activity, allowing identification of patterns evoked by tasks performed during scanning. Despite the long history of this technique, the idiosyncrasies of each dataset have led to the use of ad-hoc preprocessing protocols customized for nearly every different study. This approach is time consuming, error prone and unsuitable for combining datasets from many sources. Here we showcase fMRIPrep (http://fmriprep.org), a robust tool to prepare human fMRI data for statistical analysis. This software instrument addresses the reproducibility concerns of the established protocols for fMRI preprocessing. By leveraging the Brain Imaging Data Structure to standardize both the input datasets (MRI data as stored by the scanner) and the outputs (data ready for modeling and analysis), fMRIPrep is capable of preprocessing a diversity of datasets without manual intervention. In support of the growing popularity of fMRIPrep, this protocol describes how to integrate the tool in a task-based fMRI investigation workflow. fMRIPrep is an open-source software tool to ready fMRI datasets for statistical analysis and modeling that is robust to a diversity of inputs and produces standardized outputs, facilitating aggregation of data across studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI