数学
特征向量
组合数学
限制
随机矩阵
反向
分布(数学)
数学物理
数学分析
物理
量子力学
几何学
机械工程
工程类
作者
Jinho Baik,Thomas Bothner
摘要
The real Ginibre ensemble consists of $n\times n$ real matrices $\mathbf{X}$ whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius $R_{n}=\max_{1\leq j\leq n}|z_{j}(\mathbf{X})|$ of the eigenvalues $z_{j}(\mathbf{X})\in \mathbb{C}$ of a real Ginibre matrix $\mathbf{X}$ follows a different limiting law (as $n\rightarrow \infty $) for $z_{j}(\mathbf{X})\in \mathbb{R}$ than for $z_{j}(\mathbf{X})\in \mathbb{C}\setminus \mathbb{R}$. Building on previous work by Rider and Sinclair (Ann. Appl. Probab. 24 (2014) 1621–1651) and Poplavskyi, Tribe and Zaboronski (Ann. Appl. Probab. 27 (2017) 1395–1413), we show that the limiting distribution of $\max_{j:z_{j}\in \mathbb{R}}z_{j}(\mathbf{X})$ admits a closed-form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov–Shabat system. As byproducts of our analysis, we also obtain a new determinantal representation for the limiting distribution of $\max_{j:z_{j}\in \mathbb{R}}z_{j}(\mathbf{X})$ and extend recent tail estimates in (Ann. Appl. Probab. 27 (2017) 1395–1413) via nonlinear steepest descent techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI