A Nonlinear Regression Application via Machine Learning Techniques for Geomagnetic Data Reconstruction Processing

地球磁场 计算机科学 机器学习 支持向量机 人工智能 超平面 Boosting(机器学习) 插值(计算机图形学) 人工神经网络 算法 数据挖掘 数学 磁场 量子力学 几何学 运动(物理) 物理
作者
Huan Liu,Zheng Liu,Shuo Liu,Yihao Liu,Junchi Bin,Fang Shi,Haobin Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (1): 128-140 被引量:59
标识
DOI:10.1109/tgrs.2018.2852632
摘要

The integrity of geomagnetic data is a critical factor in understanding the evolutionary process of Earth's magnetic field, as it provides useful information for near-surface exploration, unexploded explosive ordnance detection, and so on. Aimed to reconstruct undersampled geomagnetic data, this paper presents a geomagnetic data reconstruction approach based on machine learning techniques. The traditional linear interpolation approaches are prone to time inefficiency and high labor cost, while the proposed approach has a significant improvement. In this paper, three classic machine learning models, support vector machine, random forests, and gradient boosting were built. Besides, a deep learning algorithm, recurrent neural network, was explored to further improve the training performance. The proposed learning models were used to specify a continuous regression hyperplane from a training data. The specified regression hyperplane is a mapping of the relation between the mock-up missing data and the surrounding intact data. Afterward, the trained models, essentially the hyperplanes, were used to reconstruct the missing geomagnetic traces for validation, and they can be used for reconstructing further collected new field data. Finally, numerical experiments were derived. The results showed that the performance of our methods was more competitive in comparison with the traditional linear method, as the reconstruction accuracy was increased by approximately 10%~20%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棉花糖发布了新的文献求助10
刚刚
yar应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
开放夏旋发布了新的文献求助30
1秒前
MR_MA应助科研通管家采纳,获得10
1秒前
鸣笛应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得30
1秒前
核桃应助科研通管家采纳,获得50
1秒前
MILA应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
MR_MA应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
内含子发布了新的文献求助10
4秒前
4秒前
mm完成签到,获得积分10
6秒前
6秒前
香蕉觅云应助shelley采纳,获得10
7秒前
水吉水吉发布了新的文献求助10
8秒前
科研通AI2S应助wang5945采纳,获得10
8秒前
8秒前
mm发布了新的文献求助10
8秒前
圆圆姐姐发布了新的文献求助20
11秒前
12秒前
铭铭铭发布了新的文献求助10
13秒前
15秒前
LuLu完成签到,获得积分20
16秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899773
求助须知:如何正确求助?哪些是违规求助? 3444383
关于积分的说明 10834833
捐赠科研通 3169381
什么是DOI,文献DOI怎么找? 1751093
邀请新用户注册赠送积分活动 846469
科研通“疑难数据库(出版商)”最低求助积分说明 789226