有界函数
球(数学)
趋化性
领域(数学分析)
数学分析
信号(编程语言)
组分(热力学)
数学
物理
计算机科学
热力学
生物化学
受体
化学
程序设计语言
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2019-01-01
卷期号:24 (12): 6419-6444
被引量:23
标识
DOI:10.3934/dcdsb.2019145
摘要
The well-posedness of a chemotaxis system with indirect signal production in a two-dimensional domain is shown, all solutions being global unlike for the classical Keller-Segel chemotaxis system. Nevertheless, there is a threshold value $ M_c $ of the mass of the first component which separates two different behaviours: solutions are bounded when the mass is below $ M_c $ while there are unbounded solutions starting from initial conditions having a mass exceeding $ M_c $. This result extends to arbitrary two-dimensional domains a previous result of Tao & Winkler (2017) obtained for radially symmetric solutions to a simplified version of the model in a ball and relies on a different approach involving a Liapunov functional.
科研通智能强力驱动
Strongly Powered by AbleSci AI