亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantum Algorithms for Feedforward Neural Networks

前馈神经网络 计算机科学 人工神经网络 前馈 量子 算法 人工智能 控制工程 工程类 物理 量子力学
作者
Jonathan Allcock,Chang‐Yu Hsieh,Iordanis Kerenidis,Shengyu Zhang
出处
期刊:ACM transactions on quantum computing [Association for Computing Machinery]
卷期号:1 (1): 1-24 被引量:43
标识
DOI:10.1145/3411466
摘要

Quantum machine learning has the potential for broad industrial applications, and the development of quantum algorithms for improving the performance of neural networks is of particular interest given the central role they play in machine learning today. In this paper we present quantum algorithms for training and evaluating feedforward neural networks based on the canonical classical feedforward and backpropagation algorithms. Our algorithms rely on an efficient quantum subroutine for approximating the inner products between vectors in a robust way, and on implicitly storing large intermediate values in quantum random access memory for fast retrieval at later stages. The running times of our algorithms can be quadratically faster in the size of the network than their standard classical counterparts since they depend linearly on the number of neurons in the network, as opposed to the number of connections between neurons as in the classical case. This makes our algorithms suited for large-scale, highly-connected networks where the number of edges in the network dominates the classical algorithmic running time. Furthermore, networks trained by our quantum algorithm may have an intrinsic resilience to overfitting, as the algorithm naturally mimics the effects of classical techniques such as drop-out used to regularize networks. Our algorithms can also be used as the basis for new quantum-inspired classical algorithms which have the same dependence on the network dimensions as their quantum counterparts, but with quadratic overhead in other parameters that makes them relatively impractical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
明月清风发布了新的文献求助20
2秒前
5秒前
15327432191完成签到,获得积分10
6秒前
7秒前
高高发布了新的文献求助10
8秒前
刀锋完成签到,获得积分10
11秒前
嗨Honey完成签到 ,获得积分10
14秒前
壮观的海豚完成签到 ,获得积分10
15秒前
bkagyin应助王红玉采纳,获得10
18秒前
无尾熊完成签到 ,获得积分10
21秒前
21秒前
34秒前
贰壹完成签到 ,获得积分10
36秒前
今日应助唐泽雪穗采纳,获得130
38秒前
39秒前
40秒前
41秒前
王红玉发布了新的文献求助10
43秒前
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
完美世界应助科研通管家采纳,获得10
44秒前
领导范儿应助科研通管家采纳,获得10
44秒前
44秒前
45秒前
46秒前
48秒前
brian0326发布了新的文献求助10
48秒前
唐唐完成签到 ,获得积分10
55秒前
brian0326完成签到,获得积分10
57秒前
唐泽雪穗发布了新的文献求助130
58秒前
激动的鹰完成签到,获得积分10
1分钟前
doctor2023完成签到,获得积分10
1分钟前
1分钟前
turtle完成签到 ,获得积分10
1分钟前
彭于晏应助ling采纳,获得10
1分钟前
sweet完成签到 ,获得积分10
1分钟前
1分钟前
犹豫幻丝完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847