Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?

随机森林 支持向量机 平均绝对百分比误差 体积热力学 盐湖 地理空间分析 水文学(农业) 线性回归 人工神经网络 环境科学 统计 计算机科学 地质学 数学 人工智能 遥感 地貌学 构造盆地 物理 岩土工程 量子力学
作者
Pengfei Zhan,Chunqiao Song,Kai Liu,Tan Chen,Linghong Ke,Shuangxiao Luo,Chenyu Fan
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:617: 128958-128958 被引量:7
标识
DOI:10.1016/j.jhydrol.2022.128958
摘要

The accurate quantification of lake volume is essential for regional water resources management and ecosystem health. Because of the high cost of traditional full-lake depth measurements, the bathymetric and volume information for most lakes globally is inaccessible. Whether the limited field measurements over the lake can be used to estimate lake volume is worth investigating. This study aims to propose an effective method for estimating lake mean depth/volume based on the lake deepest record. We first constructed the empirical model that relies on the linear relationship between lake maximum depth and lake mean depth/volume. The different machine learning (ML) methods were then developed and tested based on the available lake deepest record and multi-type geospatial parameters. Although the linear model shows good performance for estimating lake mean depth (R2 = 0.83), it is difficult to predict lake volume (R2 = 0.23). Most ML models perform better (R2 ≥ 0.85) than linear models. However, the support vector machines (SVM) model (SVM-3: R2 = 0.54, MAPE = 134.93 %) and deep neural network (DNN) model (DNN-3: R2 = 0.83, MAPE = 82.56 %) constructed with low influential input parameters performed poorly. In contrast, extremely gradient boosting tree (XGBoost) and random forest (RF) methods have high stability and accuracy both in predicting lake mean depth (XGBoost-1: R2 = 0.87, MAPE = 23.35 %; RF-1: R2 = 0.90, MAPE = 22.75 %) and volume (XGBoost-3: R2 = 0.99, MAPE = 31.03 %; RF-3: R2 = 0.98, MAPE = 32.63 %). The RF and XGBoost models constructed with a small amount of measured lake depth data in a different region also had a good performance. Generally, the results suggest that the XGBoost and RF methods have great potential in lake volume estimation. This research is expected to provide a feasible approach to predict lake volume and benefit lake water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小逊发布了新的文献求助10
刚刚
loy发布了新的文献求助10
刚刚
AYGI发布了新的文献求助10
刚刚
nature2号完成签到 ,获得积分10
1秒前
123完成签到,获得积分10
1秒前
顾矜应助YUMMY采纳,获得10
1秒前
2秒前
吕建峰完成签到,获得积分10
2秒前
2秒前
wxh发布了新的文献求助10
2秒前
所所应助lzyempire采纳,获得10
3秒前
3秒前
夏子完成签到,获得积分10
3秒前
3秒前
yuyu发布了新的文献求助10
3秒前
花花完成签到 ,获得积分10
3秒前
桃子发布了新的文献求助10
4秒前
4秒前
飞鸟完成签到,获得积分10
4秒前
nature2号关注了科研通微信公众号
5秒前
上官若男应助湖以采纳,获得10
5秒前
刘迎发布了新的文献求助10
5秒前
桀庚完成签到,获得积分10
6秒前
lfj1865发布了新的文献求助10
6秒前
Julo发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
簌簌应助科研通管家采纳,获得30
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
123应助科研通管家采纳,获得10
7秒前
玻尿酸发布了新的文献求助10
7秒前
cyx发布了新的文献求助10
8秒前
8秒前
SciGPT应助枫霖霜落采纳,获得10
9秒前
拓跋雨梅应助单纯的丹萱采纳,获得20
9秒前
10秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Key Questions in Second Language Acquisition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873370
求助须知:如何正确求助?哪些是违规求助? 3415602
关于积分的说明 10695179
捐赠科研通 3139870
什么是DOI,文献DOI怎么找? 1732411
邀请新用户注册赠送积分活动 835401
科研通“疑难数据库(出版商)”最低求助积分说明 781963