分解水
氧气
析氧
过电位
尖晶石
空位缺陷
材料科学
化学
无机化学
催化作用
结晶学
物理化学
电化学
电极
有机化学
光催化
冶金
生物化学
作者
Yujie Huang,Meng Li,Fei Pan,Zhuoya Zhu,Huamei Sun,Yawen Tang,Gengtao Fu
摘要
Abstract Heteroatomic substitution and vacancy engineering of spinel oxides can theoretically optimize the oxygen evolution reaction (OER) through charge redistribution and d ‐band center modification but still remain a great challenge in both the preparation and catalytic mechanism. Herein, we proposed a novel and efficient Ar‐plasma (P)‐assisted strategy to construct heteroatom Mo‐substituted and oxygen vacancies enriched hierarchical spinel Co 3 O 4 porous nanoneedle arrays in situ grown on carbon cloth (denoted P‐Mo‐Co 3 O 4 @CC) to improve the OER performance. Ar‐plasma technology can efficiently generate vacancy sites at the surface of hydroxide, which induces the anchoring of Mo anion salts through electrostatic interaction, finally facilitating the substitution of Mo atoms and the formation of oxygen vacancies on the Co 3 O 4 surface. The P‐Mo‐Co 3 O 4 @CC affords a low overpotential of only 276 mV at 10 mA cm −2 for the OER, which is 58 mV superior to that of Mo‐free Co 3 O 4 @CC and surpasses commercial RuO 2 catalyst. The robust stability and satisfactory selectivity (nearly 100% Faradic efficiency) of P‐Mo‐Co 3 O 4 @CC for the OER are also demonstrated. Theoretical studies demonstrate that Mo with variable valance states can efficiently regulates the atomic ratio of Co 3+ /Co 2+ and increases the number of oxygen vacancies, thereby inducing charge redistribution and tuning the d ‐band center of Co 3 O 4 , which improve the adsorption energy of oxygen intermediates (e.g., *OOH) on P‐Mo‐Co 3 O 4 @CC during OER. Furthermore, the two‐electrode OER//HER electrolyzer equipped with P‐Mo‐Co 3 O 4 @CC as anode displays a low operation potential of 1.54 V to deliver a current density of 10 mA cm −2 , and also exhibits good reversibility and anticurrent fluctuation ability under simulated real energy supply conditions, demonstrating the great potential of P‐Mo‐Co 3 O 4 @CC in water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI