亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Interval Growth of Lung Adenocarcinomas Manifesting as Persistent Subsolid Nodules ≤3 cm Based on Radiomic Features

列线图 医学 接收机工作特性 无线电技术 阶段(地层学) 放射科 核医学 增长模型 数学 内科学 生物 数理经济学 古生物学
作者
Fu‐Zong Wu,Yun-Ju Wu,Chi-Shen Chen,En‐Kuei Tang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 2856-2869 被引量:7
标识
DOI:10.1016/j.acra.2023.02.033
摘要

To investigate the prognostic value of the radiomic-based prediction model in predicting the interval growth rate of persistent subsolid nodules (SSNs) with an initial size of ≤ 3 cm manifesting as lung adenocarcinomas.A total of 133 patients (mean age, 59.02 years; male, 37.6%) with 133 SSNs who underwent a series of CT examinations at our hospital between 2012 and 2022 were included in this study. Forty-one radiomic features were extracted from each volumetric region of interest. Radiomic features combined with conventional clinical and semantic parameters were then selected for radiomic-based model building. To investigate the model performance in terms of substantial SSN growth and stage shift growth, the model performance was compared by the area under the curve (AUC) obtained by receiver operating characteristic analysis.The mean follow-up period was 3.62 years. For substantial SSN growth, a radiomic-based model (Model 2) based on clinical characteristics, CT semantic features, and radiomic features yielded an AUCs of 0.869 (95% CI: 0.799-0.922). In comparison with Model 1 (clinical characteristics and CT semantic features), Model 2 performed better than Model 1 for substantial SSN growth (AUC model 1:0.793 versus AUC model 2:0.869, p = 0.028). A radiomic-based nomogram combining sex, follow-up period, and three radiomic features was built for substantial SSN growth prediction. For the stage shift growth, a radiomic-based model (Model 4) based on clinical characteristics, CT semantic features, and radiomic features yielded an AUCs of 0.883 (95% CI: 0.815-0.933). Compared with Model 3 (clinical characteristics and CT semantic features), Model 4 performed better than the model 3 for stage shift growth (AUC model 1: 0.769 versus AUC model 2: 0.883, p = 0.006). A radiomic-based nomogram combining the initial nodule size, SSN classification, follow-up period, and three radiomic features was built to predict the stage shift growth.Radiomic-based models have superior utility in estimating the prognostic interval growth of patients with early lung adenocarcinomas (≤ 3 cm) than conventional clinical-semantic models in terms of substantial interval growth and stage shift growth, potentially guiding clinical decision-making with follow-up strategies of SSNs in personalized precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Prometheusss发布了新的文献求助10
9秒前
阿辉完成签到 ,获得积分10
31秒前
33秒前
yuuu发布了新的文献求助10
38秒前
1分钟前
Prometheusss发布了新的文献求助10
1分钟前
1分钟前
Jason发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
Prometheusss发布了新的文献求助10
1分钟前
1分钟前
chiyu发布了新的文献求助20
1分钟前
chiyu完成签到,获得积分10
2分钟前
Tayzon完成签到 ,获得积分10
2分钟前
yb完成签到,获得积分10
2分钟前
发个15分的完成签到 ,获得积分10
2分钟前
科研通AI2S应助卷卷采纳,获得10
2分钟前
3分钟前
卷卷发布了新的文献求助10
3分钟前
Jasper应助卷卷采纳,获得10
3分钟前
科研通AI5应助yuuu采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
稚久完成签到,获得积分20
4分钟前
白华苍松完成签到,获得积分10
5分钟前
Wang完成签到 ,获得积分20
6分钟前
7分钟前
GaoYuanLong发布了新的文献求助30
7分钟前
7分钟前
辛勤紫萍完成签到 ,获得积分10
8分钟前
稚久发布了新的文献求助10
9分钟前
Lignin完成签到,获得积分10
9分钟前
天天快乐应助俊秀的幼枫采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
十七完成签到 ,获得积分10
10分钟前
CRUSADER完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851653
求助须知:如何正确求助?哪些是违规求助? 4150256
关于积分的说明 12856689
捐赠科研通 3898263
什么是DOI,文献DOI怎么找? 2142405
邀请新用户注册赠送积分活动 1162156
关于科研通互助平台的介绍 1062295