Radiomics Nomogram Based on Optimal Volume of Interest Derived from High-Resolution CT for Preoperative Prediction of IASLC Grading in Clinical IA Lung Adenocarcinomas: A Multi-Center, Large-Population Study

列线图 医学 接收机工作特性 无线电技术 逻辑回归 单变量 分级(工程) 肺癌 放射科 人口 核医学 多元统计 肿瘤科 内科学 计算机科学 机器学习 土木工程 工程类 环境卫生
作者
Zhichao Zuo,Guochao Zhang,Shanyue Lin,Qi Xue,Wanyin Qi,Wei Zhang,Xiaohong Fan
出处
期刊:Technology in Cancer Research & Treatment [SAGE]
卷期号:23: 15330338241300734-15330338241300734 被引量:6
标识
DOI:10.1177/15330338241300734
摘要

The novel grading system developed by the International Association for the Study of Lung Cancer (IASLC) for clinical stage IA lung adenocarcinomas has demonstrated remarkable prognostic capabilities. Notably, tumors classified as grade 3 have been associated with poor prognostic outcomes, thereby playing a crucial role in the formulation of personalized surgical strategies. The objective of this study is to develop a radiomics nomogram that utilizes the optimal volume of interest (VOI) derived from high-resolution CT (HRCT) scans to accurately predict the presence of grade 3 tumors in patients with clinical IA lung adenocarcinomas. In this multi-center, large-population study, clinical, pathological, and HRCT imaging data from 1418 patients who were pathologically diagnosed with lung adenocarcinomas were retrospectively collected. The data was obtained from four hospital databases between January 2018 and May 2022. From this patient cohort, 1206 individuals were screened from three databases and randomly divided into training and internal validation datasets in a 7:3 ratio. An additional dataset consisting of 212 individuals was used for external validation dataset. Radiomics features were extracted from HRCT images at various scales, including VOI −2mm , VOI entire , VOI +2mm , and VOI +4mm . To reduce dimensionality, select relevant features, and build radiomics signatures, the maximal redundancy minimal relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithm were utilized. Univariate and multivariate logistic regression analyses were conducted to identify independent clinic-radiological (Clin-Rad) predictors. Receiver operating characteristic (ROC) curves and corresponding area under the curve (AUC) were used to evaluate the diagnostic efficiency. A nomogram predicting the risk of grade 3 in clinical stage IA lung adenocarcinoma was constructed based on multivariate logistic regression, combining independent predictors and the optimal radiomics signatures. Multivariate logistic regression revealed that males exhibited a higher prevalence of grade 3 tumors, and solid nodules were frequently observed through radiological assessments. The utilization of radiomics features extracted from the VOI entire resulted in significant improvements in predictive performance, as evidenced by AUC values of 0.900 (0.880-0.942), 0.885 (0.824-0.946), and 0.888 (0.782-0.993) for the training, internal validation, and external validation datasets, respectively. Furthermore, the nomogram that combined VOI entire -based radiomics signatures and Clin-Rad characteristics, exhibited remarkable predictive performance. This was indicated by AUC values of 0.910(0.873-0.942), 0.891 (0.845-0.937), and 0.905 (0.846-0.964) for the training, internal validation, and external validation datasets, respectively. The extraction of radiomics features from both the indented and peri-tumoral regions does not offer any additional benefits in predicting grade 3 tumors according to the IASLC system. However, when combining the VOI entire -based radiomics model with Clin-Rad characteristics, the resulting integrated nomogram exhibited remarkable predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献就着酒灵感如泉涌完成签到,获得积分10
刚刚
感谢开放的丹云转发科研通微信,获得积分50
1秒前
李爱国应助半分青采纳,获得10
2秒前
2秒前
感谢song转发科研通微信,获得积分50
2秒前
xue完成签到,获得积分20
3秒前
CipherSage应助donk666采纳,获得10
3秒前
4秒前
大模型应助我不理解采纳,获得10
4秒前
Lucas应助敏感易烟采纳,获得30
6秒前
6秒前
6秒前
CH发布了新的文献求助10
7秒前
8秒前
科研小菜完成签到 ,获得积分10
8秒前
8秒前
10秒前
计划完成签到,获得积分10
11秒前
感谢我叫蔡徐坤转发科研通微信,获得积分50
11秒前
11秒前
YJ发布了新的文献求助10
12秒前
FashionBoy应助神勇雅蕊采纳,获得10
12秒前
感谢高介安转发科研通微信,获得积分50
13秒前
13秒前
14秒前
感谢威廉转发科研通微信,获得积分50
14秒前
加菲丰丰发布了新的文献求助50
15秒前
小二郎应助wkb采纳,获得10
16秒前
感谢激动转发科研通微信,获得积分50
16秒前
量子星尘发布了新的文献求助10
17秒前
烤肠应助呆萌的机器猫采纳,获得20
18秒前
zzz发布了新的文献求助10
18秒前
dududu发布了新的文献求助10
19秒前
科研通AI6应助Chilema采纳,获得30
19秒前
水泥完成签到,获得积分10
20秒前
大个应助何遇采纳,获得10
22秒前
CH完成签到,获得积分10
23秒前
执着的无心完成签到,获得积分10
23秒前
感谢松下落叶转发科研通微信,获得积分50
23秒前
李煜琛完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541302
求助须知:如何正确求助?哪些是违规求助? 4627741
关于积分的说明 14605193
捐赠科研通 4568815
什么是DOI,文献DOI怎么找? 2504811
邀请新用户注册赠送积分活动 1482313
关于科研通互助平台的介绍 1453862