膜
反向电渗析
化学工程
材料科学
渗透力
正渗透
双层
咪唑酯
半透膜
离子运输机
选择性
化学
电渗析
有机化学
生物化学
反渗透
工程类
催化作用
作者
Tonnah Kwesi Rockson,Milton Chai,Mojtaba Abdollahzadeh,Huan Xiao,Munirah Mohammad,Ehsan Hosseini,Mohammad Zakertabrizi,Dorrin Jarrahbashi,Amir Asadi,Amir Razmjou,Mohsen Asadnia
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-06-22
卷期号:17 (13): 12445-12457
被引量:50
标识
DOI:10.1021/acsnano.3c01924
摘要
Membrane-based salinity gradient energy generation from the osmotic potential at the interface of a river and seawater through reverse electrodialysis is a promising route for realizing clean, abundant, and sustainable energy. Membrane permeability and selective ion transport are crucial for efficient osmotic energy harvesting. However, balancing these two parameters in the membrane design and synthesis remains challenging. Herein, a hybridized bilayer metal–organic frameworks (MOF-on-MOF) membrane is fabricated for efficient transmembrane conductance for enhanced osmotic power generation. The heterogeneous membrane is constructed from imidazolate framework-8 (ZIF-8) deposited on a UiO-66-NH2 membrane intercalated with poly(sodium-4-styrenesulfonate) (PSS). The angstrom-scale cavities in the ZIF-8 layer promote ion selectivity by size exclusion, and the PSS-intercalated UiO-66-NH2 film ensures cation permeability. The synergistic effect is a simultaneous improvement in ion transport and selectivity from an overlapped electric double layer generating 40.01 W/m2 and 665 A/m2 permeability from a 500-fold concentration gradient interface at 3 KΩ and 9.20 W/m2 from mixing of real sea–river water. This work demonstrates a rational design strategy for hybrid membranes with improved ion selectivity and permeability for the water–energy nexus.
科研通智能强力驱动
Strongly Powered by AbleSci AI