A Highly Sensitive Model Based on Graph Neural Networks for Enzyme Key Catalytic Residue Prediction

计算机科学 人工神经网络 水准点(测量) 活动站点 图形 人工智能 生物系统 机器学习 数据挖掘 化学 理论计算机科学 生物 生物化学 大地测量学 地理
作者
Xiaowei Shen,Shiding Zhang,Jianyu Long,Changjing Chen,Meng Wang,Ziheng Cui,Biqiang Chen,Tianwei Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (14): 4277-4290 被引量:11
标识
DOI:10.1021/acs.jcim.3c00273
摘要

Determining the catalytic site of enzymes is a great help for understanding the relationship between protein sequence, structure, and function, which provides the basis and targets for designing, modifying, and enhancing enzyme activity. The unique local spatial configuration bound to the substrate at the active center of the enzyme determines the catalytic ability of enzymes and plays an important role in the catalytic site prediction. As a suitable tool, the graph neural network can better understand and identify the residue sites with unique local spatial configurations due to its remarkable ability to characterize the three-dimensional structural features of proteins. Consequently, a novel model for predicting enzyme catalytic sites has been developed, which incorporates a uniquely designed adaptive edge-gated graph attention neural network (AEGAN). This model is capable of effectively handling sequential and structural characteristics of proteins at various levels, and the extracted features enable an accurate description of the local spatial configuration of the enzyme active site by sampling the local space around candidate residues and special design of amino acid physical and chemical properties. To evaluate its performance, the model was compared with existing catalytic site prediction models using different benchmark datasets and achieved the best results on each benchmark dataset. The model exhibited a sensitivity of 0.9659, accuracy of 0.9226, and area under the precision-recall curve (AUPRC) of 0.9241 on the independent test set constructed for evaluation. Furthermore, the F1-score of this model is nearly four times higher than that of the best-performing similar model in previous studies. This research can serve as a valuable tool to help researchers understand protein sequence-structure-function relationships while facilitating the characterization of novel enzymes of unknown function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私路人发布了新的文献求助10
刚刚
姜戈完成签到,获得积分10
1秒前
科研通AI2S应助koi采纳,获得10
1秒前
JamesPei应助koi采纳,获得10
1秒前
小遇完成签到 ,获得积分10
1秒前
gwgplmz完成签到,获得积分10
1秒前
shadow完成签到,获得积分10
1秒前
浮游应助季一采纳,获得10
2秒前
迷路胡萝卜完成签到,获得积分10
2秒前
yimu发布了新的文献求助10
2秒前
满意的妙海完成签到 ,获得积分10
2秒前
子车茗应助花痴的沛文采纳,获得30
3秒前
123发布了新的文献求助10
3秒前
打打应助Maxw采纳,获得10
3秒前
hbpeking发布了新的文献求助30
3秒前
WendyWen完成签到,获得积分10
3秒前
Criminology34应助0055采纳,获得10
3秒前
4秒前
晴天有雨发布了新的文献求助10
4秒前
5秒前
还单身的涵梅完成签到 ,获得积分10
5秒前
潇潇完成签到 ,获得积分10
6秒前
常泽洋122完成签到,获得积分10
6秒前
6秒前
刘欣完成签到,获得积分10
8秒前
鲜艳的巧曼完成签到 ,获得积分10
8秒前
huihui完成签到,获得积分10
8秒前
大模型应助阿伦采纳,获得10
8秒前
小锂故发布了新的文献求助10
9秒前
好多鱼发布了新的文献求助10
9秒前
Akim应助沈瑶采纳,获得10
9秒前
9秒前
G1完成签到,获得积分10
9秒前
10秒前
追风少侠李二狗完成签到,获得积分10
10秒前
能干凝冬完成签到,获得积分10
10秒前
刘传宏完成签到,获得积分10
10秒前
11秒前
峰宝宝完成签到,获得积分10
11秒前
柳叶完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555414
求助须知:如何正确求助?哪些是违规求助? 4640095
关于积分的说明 14659158
捐赠科研通 4582118
什么是DOI,文献DOI怎么找? 2513067
邀请新用户注册赠送积分活动 1487811
关于科研通互助平台的介绍 1458798