Toward Fast Personalized Semi-Supervised Federated Learning in Edge Networks: Algorithm Design and Theoretical Guarantee

计算机科学 算法 机器学习 GSM演进的增强数据速率 趋同(经济学) 人工智能 边缘设备 收敛速度 无线 个性化 钥匙(锁) 云计算 电信 操作系统 经济增长 万维网 计算机安全 经济
作者
Shuai Wang,Yanqing Xu,Yanli Yuan,Tony Q. S. Quek
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (2): 1170-1183 被引量:7
标识
DOI:10.1109/twc.2023.3286990
摘要

Recent years have witnessed a huge demand for artificial intelligence and machine learning applications in wireless edge networks to assist individuals with real-time services. Federated learning (FL) has emerged as a suitable and appealing distributed learning paradigm to deploy these applications at the network edge. Despite the many successful efforts made to apply FL to wireless edge networks, the adopted algorithms mostly follow the same spirit as FedAvg, thereby heavily suffering from the practical challenges of label deficiency and device heterogeneity. These challenges not only decelerate the model training in FL but also downgrade the application performance. In this paper, we focus on the algorithm design and address these challenges by investigating the personalized semi-supervised FL problem and proposing an effective algorithm, named FedCPSL. In particular, the techniques of pseudo-labeling, and interpolation-based model personalization are judiciously combined to provide a new problem formulation for personalized semi-supervised FL. The proposed FedCPSL algorithm employs novel strategies, including adaptive client variance reduction, local momentum, and normalized global aggregation, to combat the challenge of device heterogeneity and boost algorithm convergence. The convergence property of FedCPSL is also thoroughly analyzed and shows that FedCPSL is resilient to both statistical and system heterogeneity, obtaining a sublinear convergence rate. Experimental results on image classification tasks are presented to demonstrate that the proposed approach outperforms its counterparts in terms of both convergence speed and application performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
神奇女侠完成签到,获得积分20
刚刚
ZHOUZHOU完成签到,获得积分10
刚刚
张张发布了新的文献求助10
刚刚
hhhhhhhhh完成签到,获得积分10
刚刚
sdnihbhew完成签到,获得积分10
3秒前
沉默已逝完成签到,获得积分20
3秒前
FF完成签到,获得积分10
4秒前
清爽电脑完成签到,获得积分10
4秒前
乐乐应助阿梦采纳,获得10
4秒前
eleven完成签到,获得积分10
4秒前
顾矜应助路路采纳,获得10
6秒前
COSMAO应助淡然的含卉采纳,获得20
7秒前
511应助范先生采纳,获得10
9秒前
9秒前
10秒前
科研通AI5应助JIANGCHUNYAN采纳,获得30
10秒前
10秒前
10秒前
田様应助marco采纳,获得10
10秒前
平常玉兰完成签到,获得积分10
10秒前
11秒前
void完成签到,获得积分10
12秒前
满意代亦完成签到 ,获得积分10
12秒前
joker完成签到,获得积分20
13秒前
dddyrrrrr完成签到 ,获得积分10
13秒前
阿源发布了新的文献求助10
13秒前
13秒前
13秒前
求帮助完成签到,获得积分10
14秒前
14秒前
小蘑菇应助阿花采纳,获得10
14秒前
幽默赛君完成签到 ,获得积分10
14秒前
15秒前
15秒前
烂漫的紫槐完成签到,获得积分10
15秒前
WE关注了科研通微信公众号
15秒前
15秒前
17秒前
求帮助发布了新的文献求助10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102129
求助须知:如何正确求助?哪些是违规求助? 3639682
关于积分的说明 11534184
捐赠科研通 3348477
什么是DOI,文献DOI怎么找? 1840087
邀请新用户注册赠送积分活动 907197
科研通“疑难数据库(出版商)”最低求助积分说明 824328