Loss Functions and Metrics in Deep Learning

深度学习 计算机科学 任务(项目管理) 人工智能 功能(生物学) 机器学习 经济 管理 进化生物学 生物
作者
Juan Terven,Diana‐Margarita Córdova‐Esparza,Alfonzo Ramirez-Pedraza,Edgar Arturo Chávez‐Urbiola
出处
期刊:Cornell University - arXiv 被引量:41
标识
DOI:10.48550/arxiv.2307.02694
摘要

This paper presents a comprehensive review of loss functions and performance metrics in deep learning, highlighting key developments and practical insights across diverse application areas. We begin by outlining fundamental considerations in classic tasks such as regression and classification, then extend our analysis to specialized domains like computer vision and natural language processing including retrieval-augmented generation. In each setting, we systematically examine how different loss functions and evaluation metrics can be paired to address task-specific challenges such as class imbalance, outliers, and sequence-level optimization. Key contributions of this work include: (1) a unified framework for understanding how losses and metrics align with different learning objectives, (2) an in-depth discussion of multi-loss setups that balance competing goals, and (3) new insights into specialized metrics used to evaluate modern applications like retrieval-augmented generation, where faithfulness and context relevance are pivotal. Along the way, we highlight best practices for selecting or combining losses and metrics based on empirical behaviors and domain constraints. Finally, we identify open problems and promising directions, including the automation of loss-function search and the development of robust, interpretable evaluation measures for increasingly complex deep learning tasks. Our review aims to equip researchers and practitioners with clearer guidance in designing effective training pipelines and reliable model assessments for a wide spectrum of real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
科研人完成签到,获得积分10
刚刚
lmx发布了新的文献求助10
刚刚
浮游应助Tao采纳,获得10
1秒前
谷谷完成签到 ,获得积分10
1秒前
22发布了新的文献求助10
2秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Eternity2025应助科研通管家采纳,获得20
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
小蘑菇应助风趣问蕊采纳,获得10
4秒前
zzz完成签到,获得积分10
7秒前
否定式完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
何文鑫发布了新的文献求助10
11秒前
11秒前
负责惊蛰发布了新的文献求助10
14秒前
Deadlypace完成签到,获得积分10
14秒前
李健应助烟雾镜采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782