已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing three-dimensional convolutional neural network-based geometric feature recognition for adaptive additive manufacturing: a signed distance field data approach

计算机科学 卷积神经网络 人工智能 几何数据分析 几何造型 杠杆(统计) 背景(考古学) 计算机辅助设计 几何形状 几何变换 几何设计 模式识别(心理学) 工程制图 数学 工程类 古生物学 生物 图像(数学) 几何学
作者
Arthur Hilbig,Lucas Vogt,Stefan Holtzhausen,Kristin Paetzold
出处
期刊:Journal of Computational Design and Engineering [Oxford University Press]
卷期号:10 (3): 992-1009 被引量:8
标识
DOI:10.1093/jcde/qwad027
摘要

Abstract In the context of additive manufacturing, the adjustment of process data to individual geometric features offers the potential to further increase manufacturing speed and quality, while being widely underestimated in recent research. Unfortunately, the current non-uniform data handling in the CAD-CAM-Link results in a downstream data loss, that prevents the availability of geometric knowledge from being present at any time to apply the more advanced approaches of adaptive slicing and tool path generation. Automatic detection of various geometric entities would be beneficial for classifying partial surfaces and volumetric ranges to gain customized informational insights of geometric parameterization. In this work, an enhanced approach of geometric deep learning for the analysis of voxelized engineering parts will be presented to align the inference representations to modeling paradigms for complex design models like architected materials. Although the baseline voxel representation offers distinct advantages in detection accuracy, it comes with an adversely large memory footprint. The geometry discretization leads to high resolutions needed to capture various detail levels that prevent the analysis of fine-grained objects. To achieve efficient usage of three-dimensional (3D) deep learning techniques, we propose a 3D-convolutional neural network-based feature recognition approach using signed distance field data to limit the needed resolution. These implicit geometric data leverage the advantages of volumetric convolution while alleviating their disadvantages through the use of the continuous signed distance function. When analyzing computer-aided design data for geometric primitive features, a common application task in surface reconstruction of reverse engineering the proposed methodology, achieves a detection accuracy that is in line with the accuracy values achieved by comparable algorithms. This enables the recognition of fine-grained surface instances. The unambiguous shape information extracted could be used in subsequent adaptive slicing algorithms to achieve individual geometry-based hatch generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ride发布了新的文献求助10
1秒前
倾卿如玉发布了新的文献求助10
2秒前
2秒前
3秒前
闪闪平文完成签到 ,获得积分10
4秒前
今后应助YT采纳,获得10
5秒前
科目三应助ym采纳,获得10
5秒前
温婉的惜文完成签到 ,获得积分10
5秒前
Ride完成签到,获得积分10
6秒前
内向鬼神完成签到 ,获得积分10
6秒前
6秒前
Jasper应助KK采纳,获得10
7秒前
FEMTO发布了新的文献求助10
8秒前
8秒前
10秒前
xyb发布了新的文献求助10
11秒前
Mikey完成签到,获得积分10
12秒前
Epiphany_wts完成签到,获得积分10
12秒前
fox199753206发布了新的文献求助10
13秒前
14秒前
Silvia发布了新的文献求助10
15秒前
研友_VZG7GZ应助FEMTO采纳,获得10
15秒前
苗条的冷霜完成签到,获得积分20
16秒前
小智完成签到 ,获得积分10
16秒前
17秒前
粗暴的小熊猫完成签到 ,获得积分10
18秒前
23秒前
25秒前
26秒前
26秒前
27秒前
27秒前
swallow完成签到,获得积分10
27秒前
27秒前
ybybyb1213完成签到,获得积分20
28秒前
29秒前
123发布了新的文献求助10
30秒前
Monday发布了新的文献求助10
31秒前
ybybyb1213发布了新的文献求助30
31秒前
反复发作完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542636
求助须知:如何正确求助?哪些是违规求助? 4628886
关于积分的说明 14610075
捐赠科研通 4570066
什么是DOI,文献DOI怎么找? 2505534
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454220