Application of modern approaches to the synthesis of biohydrogen from organic waste

生物制氢 暗发酵 制氢 原材料 环境科学 商品化学品 发酵产氢 生化工程 废物管理 工艺工程 化学 工程类 有机化学 生物化学 催化作用
作者
Prabhakar Sharma,Akshay Jain,Bhaskor Jyoti Bora,B. Deepanraj,Pau Loke Show,Rameshprabu Ramaraj,Ümit Ağbulut,Kuan Shiong Khoo
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:48 (55): 21189-21213 被引量:9
标识
DOI:10.1016/j.ijhydene.2023.03.029
摘要

Hydrogen production with the use of biological processes and renewable feedstock may be considered an economical and sustainable alternative fuel. The high calorific value and zero emission in the production of biohydrogen make it the best possible source for energy security and environmental sustainability. Solar energy, microorganisms, and feedstock such as organic waste and lignocellulosic biomasses of different feedstock are the only requirements of biohydrogen production along with specific environmental conditions for the growth of microorganisms. Hydrogen is also named as ‘fuel of the future’. This study presents different pathways of biohydrogen production. Because of breakthroughs in R&D, biohydrogen has been elevated to the status of a viable biofuel for the future. However, significant problems such as the cost of preprocessing, oxygen-hypersensitive enzymes, a lack of uniform light illumination for photobiological processes, and other expenses requiring intensification process limits are faced throughout the biohydrogen production process. Despite concerns regarding nanoparticle (NP) toxicity at higher concentrations, proper NP concentrations may improve hydrogen production dramatically by dissolving the substrates for bacterial hydrogen transformation. The data-driven Machine Learning (ML) model allows for quick response approximation for fermentative biohydrogen production while accounting for non-linear interactions between input variables. Scaling up biohydrogen production for future commercial-scale applications requires combining cost-benefit evaluations and life cycle effects with machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
锅包肉发布了新的文献求助10
1秒前
陈传涛发布了新的文献求助100
1秒前
量子星尘发布了新的文献求助10
2秒前
打打应助老实的孤丹采纳,获得10
2秒前
我玩亚索必c完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
狂野未来发布了新的文献求助10
4秒前
在水一方应助榴莲姑娘采纳,获得10
5秒前
aloha01发布了新的文献求助10
5秒前
ding应助vivian采纳,获得10
5秒前
无花果应助de铭采纳,获得10
6秒前
今后应助Lynne采纳,获得10
6秒前
safari完成签到 ,获得积分10
6秒前
小尾巴发布了新的文献求助30
7秒前
Jasper应助之之采纳,获得10
7秒前
7秒前
周zz完成签到,获得积分10
7秒前
7秒前
年轻映天完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
赵鑫雅发布了新的文献求助10
10秒前
11秒前
Morii完成签到,获得积分10
11秒前
12秒前
12秒前
深情安青应助月下荷花采纳,获得10
13秒前
13秒前
LiuXinping发布了新的文献求助10
13秒前
LYD完成签到,获得积分10
13秒前
冷静的小海豚完成签到 ,获得积分10
14秒前
15秒前
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593