A Novel Seizure Detection Method Based on the Feature Fusion of Multimodal Physiological Signals

计算机科学 模式识别(心理学) 可穿戴计算机 人工智能 特征(语言学) 信号(编程语言) 语言学 哲学 嵌入式系统 程序设计语言
作者
Duanpo Wu,Jun Wei,Pierre‐Paul Vidal,Danping Wang,Yixuan Yuan,Jiuwen Cao,Tiejia Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 27545-27556 被引量:1
标识
DOI:10.1109/jiot.2024.3398418
摘要

Seizure detection is traditionally done using video/electroencephalography monitoring, but for out-of-hospital patients, this method is costly. In recent years, portable device to detect seizures gains attention. In this paper, multimodal signals collected by portable devices are studied, and a seizure detection algorithm is proposed based on adaptive multi-bit local differential ternary pattern (MLDTP). This algorithm is used for detecting seizure period and inter-seizure period. Traditional local binary pattern has certain limitations in describing one-dimensional time series signals. It can only describe two types of structures in signals: Rising structure and falling structure, making the signal patterns overly monotonous and not conducive to classification tasks. To address this issue, this paper introduces two additional structures, slowly rising structure and slowly falling structure, into the signal description using MLDTP method. This method constructs multi-bit neighboring relationships of the signals, and adaptively selects the optimal MLDTP parameters for different modalities using the Archimedes optimization algorithm (AOA). Additionally, this paper extensively discusses a multimodal signal fusion strategy, mapping features of different modal signals to the same feature space through the MLDTP algorithm to achieve information complementarity. Long-term recorded data from 18 patients were collected using the wearable device Biovital P1, with 13 cases from the Children's Hospital affiliated with Children's Hospital, Zhejiang University School of Medicine, and 5 cases from the fourth Affiliated Hospital of Anhui Medical University. The dataset underwent five-fold cross-validation, resulting in average accuracy, precision, sensitivity and F1 score of 96.81%, 98.55%, 95.24% and 96.87%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刀刘完成签到,获得积分20
刚刚
fangfang发布了新的文献求助30
刚刚
大海完成签到,获得积分10
刚刚
1秒前
2秒前
赵绵绵发布了新的文献求助10
2秒前
4秒前
bcl发布了新的文献求助10
4秒前
乐乐应助棒棒的红红采纳,获得10
5秒前
小二郎应助蓝羽采纳,获得10
6秒前
7秒前
彭于晏应助辣椒油油采纳,获得10
7秒前
mufcyang发布了新的文献求助10
8秒前
RUI完成签到 ,获得积分10
9秒前
9秒前
xiaoxiao完成签到,获得积分10
9秒前
完美世界应助南宫硕采纳,获得10
9秒前
搞怪的康发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
小酒窝发布了新的文献求助10
12秒前
小刘很怕忙完成签到,获得积分10
12秒前
12秒前
14秒前
钟鸿盛Domi发布了新的文献求助10
14秒前
深情安青应助机智的寒天采纳,获得10
14秒前
fangfang完成签到,获得积分20
15秒前
小蘑菇应助cssfsa采纳,获得30
15秒前
15秒前
15秒前
16秒前
16秒前
shhoing应助tguczf采纳,获得10
16秒前
超帅妖丽发布了新的文献求助10
16秒前
嗨是完成签到,获得积分10
16秒前
17秒前
爆米花应助宛雷雅采纳,获得30
17秒前
科研通AI2S应助胖崽胖崽采纳,获得10
18秒前
18秒前
这就去学习完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542341
求助须知:如何正确求助?哪些是违规求助? 4628524
关于积分的说明 14609085
捐赠科研通 4569716
什么是DOI,文献DOI怎么找? 2505357
邀请新用户注册赠送积分活动 1482749
关于科研通互助平台的介绍 1454162