Deep Learning for Detecting Dental Plaque and Gingivitis From Oral Photographs: A Systematic Review

医学 牙龈炎 牙科 牙菌斑 梅德林 人工智能 医学物理学 口腔正畸科 计算机科学 政治学 法学
作者
Mohammad Moharrami,Elaheh Vahab,Mobina Bagherianlemraski,Ghazal Hemmati,Sonica Singhal,Carlos Quiñonez,Falk Schwendicke,Michael Glogauer
出处
期刊:Community Dentistry and Oral Epidemiology [Wiley]
标识
DOI:10.1111/cdoe.70001
摘要

ABSTRACT Objectives This systematic review aimed to evaluate the performance of deep learning (DL) models in detecting dental plaque and gingivitis from red, green, and blue (RGB) intraoral photographs. Methods A comprehensive literature search was conducted across Medline, Scopus, Embase, and Web of Science databases up to January 31, 2025. The methodological characteristics and performance metrics of studies developing and validating DL models for classification, detection, or segmentation tasks were analysed. The risk of bias was assessed using the quality assessment of diagnostic accuracy studies 2 (QUADAS‐2) tool, and the certainty of the evidence was evaluated with the grading of recommendations assessment, development, and evaluation (GRADE) framework. Results From 3307 identified records, 23 studies met the inclusion criteria. Of these, 10 focused on dental plaque, 11 on gingivitis, and two addressed both outcomes. The risk of bias was low in all QUADAS‐2 domains for 11 studies, with low applicability concerns in nine. For dental plaque, DL models showed robust performance in the segmentation task, with intersection over union (IoU) values ranging from 0.64 to 0.86 (median 0.74). Three studies indicated that DL models outperformed dentists in identifying dental plaque when disclosing agents were not used. For gingivitis, the models demonstrated potential but underperformed compared to dental plaque, with IoU values ranging from 0.43 to 0.72 (median 0.63). The certainty of the evidence was moderate for dental plaque and low for gingivitis. Conclusions DL models demonstrate promising potential for detecting dental plaque and gingivitis from intraoral photographs, with superior performance in plaque detection. Leveraging accessible imaging devices such as smartphones, these models can enhance teledentistry and may facilitate early screening for periodontal disease. However, the lack of external testing, multicenter studies, and reporting consistency highlights the need for further research to ensure real‐world applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助精明元容采纳,获得10
刚刚
飘零的歌手完成签到,获得积分10
刚刚
叹千泠完成签到,获得积分10
刚刚
yxw发布了新的文献求助10
刚刚
刚刚
1秒前
fangtong完成签到,获得积分10
1秒前
LHP完成签到,获得积分10
1秒前
FashionBoy应助海岸采纳,获得10
1秒前
Wand完成签到,获得积分10
1秒前
不学无墅完成签到,获得积分10
1秒前
小马甲应助哈哈采纳,获得10
2秒前
ZhAngrUiYu完成签到,获得积分10
2秒前
隐形曼青应助对啊采纳,获得10
2秒前
ljy完成签到,获得积分10
2秒前
烟花应助王宝宝采纳,获得30
2秒前
3秒前
Qyyy发布了新的文献求助10
3秒前
你的女孩TT完成签到,获得积分10
3秒前
能干冰露完成签到,获得积分10
3秒前
son完成签到,获得积分10
4秒前
4秒前
YY再摆烂完成签到,获得积分10
4秒前
shanmao完成签到,获得积分10
5秒前
wer完成签到 ,获得积分10
5秒前
科研人完成签到,获得积分10
6秒前
最初发布了新的文献求助100
6秒前
乂氼完成签到 ,获得积分10
6秒前
玛卡完成签到 ,获得积分10
6秒前
乐观的皮卡丘完成签到,获得积分10
7秒前
闪闪映易完成签到,获得积分10
7秒前
7秒前
浮游应助王工采纳,获得10
7秒前
SciGPT应助王工采纳,获得10
7秒前
jtyt完成签到,获得积分10
8秒前
搞怪城完成签到,获得积分10
8秒前
努力小温完成签到,获得积分10
8秒前
小小虾完成签到 ,获得积分10
8秒前
9秒前
Iron_five完成签到 ,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348298
求助须知:如何正确求助?哪些是违规求助? 4482432
关于积分的说明 13950813
捐赠科研通 4381161
什么是DOI,文献DOI怎么找? 2407200
邀请新用户注册赠送积分活动 1399822
关于科研通互助平台的介绍 1373090