The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and exploitation. To address these challenges, this paper proposes an improved version of the ZOA, termed the Multi-strategy Improved Zebra Optimization Algorithm (MIZOA). First, a multi-population search strategy is introduced to replace the traditional single population structure, dividing the population into multiple subpopulations to enhance diversity and improve global convergence. Second, the mutation operation of genetic algorithm (GA) is integrated with the Metropolis criterion to boost exploration capability in the early stages while maintaining strong exploitation performance in the later stages. Third, a novel selective aggregation strategy is proposed, incorporating the hunting behavior of the Coati Optimization Algorithm (COA) and Lévy flight to further enhance global exploration and convergence accuracy during the defense phase. Experimental evaluations are conducted on 23 benchmark functions, comparing the MIZOA with eight existing swarm intelligence algorithms. The performance is assessed using non-parametric statistical tests, including the Wilcoxon rank-sum test and the Friedman test. The results demonstrate that the MIZOA achieves superior global convergence accuracy and optimization performance, confirming its robustness and effectiveness. The MIZOA was evaluated on real-world engineering problems against seven algorithms to validate its practical performance. Furthermore, when applied to path planning tasks for Automated Guided Vehicles (AGVs), the MIZOA consistently identifies paths closer to the global optimum in both simple and complex environments, thereby further validating the effectiveness of the proposed improvements.