亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-Strategy Improved Zebra Optimization Algorithm for AGV Path Planning

作者
Cunji Zhang,Chuangeng Chen,Jiaqi Lü,Xuan Jing,Wei Liu
出处
期刊:Biomimetics [MDPI AG]
卷期号:10 (10): 660-660
标识
DOI:10.3390/biomimetics10100660
摘要

The Zebra Optimization Algorithm (ZOA) is a metaheuristic algorithm inspired by the collective behavior of zebras in the wild. Like many other swarm intelligence algorithms, the ZOA faces several limitations, including slow convergence, susceptibility to local optima, and an imbalance between exploration and exploitation. To address these challenges, this paper proposes an improved version of the ZOA, termed the Multi-strategy Improved Zebra Optimization Algorithm (MIZOA). First, a multi-population search strategy is introduced to replace the traditional single population structure, dividing the population into multiple subpopulations to enhance diversity and improve global convergence. Second, the mutation operation of genetic algorithm (GA) is integrated with the Metropolis criterion to boost exploration capability in the early stages while maintaining strong exploitation performance in the later stages. Third, a novel selective aggregation strategy is proposed, incorporating the hunting behavior of the Coati Optimization Algorithm (COA) and Lévy flight to further enhance global exploration and convergence accuracy during the defense phase. Experimental evaluations are conducted on 23 benchmark functions, comparing the MIZOA with eight existing swarm intelligence algorithms. The performance is assessed using non-parametric statistical tests, including the Wilcoxon rank-sum test and the Friedman test. The results demonstrate that the MIZOA achieves superior global convergence accuracy and optimization performance, confirming its robustness and effectiveness. The MIZOA was evaluated on real-world engineering problems against seven algorithms to validate its practical performance. Furthermore, when applied to path planning tasks for Automated Guided Vehicles (AGVs), the MIZOA consistently identifies paths closer to the global optimum in both simple and complex environments, thereby further validating the effectiveness of the proposed improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑾木完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
3秒前
7秒前
光亮的半山完成签到,获得积分10
12秒前
Clay完成签到 ,获得积分10
12秒前
平常友卉发布了新的文献求助10
13秒前
13秒前
18秒前
oddfunction发布了新的文献求助10
19秒前
噜噜大王发布了新的文献求助30
28秒前
噜噜大王发布了新的文献求助30
1分钟前
黄玥完成签到,获得积分10
1分钟前
JamesPei应助诚心山灵采纳,获得30
1分钟前
小铭同学完成签到,获得积分10
1分钟前
1分钟前
智慧金刚完成签到 ,获得积分10
1分钟前
诚心山灵发布了新的文献求助30
1分钟前
2分钟前
噜噜大王发布了新的文献求助10
2分钟前
koko19981228发布了新的文献求助10
2分钟前
2分钟前
噜噜大王发布了新的文献求助100
3分钟前
淡定完成签到,获得积分10
3分钟前
3分钟前
噜噜大王发布了新的文献求助10
3分钟前
淡定发布了新的文献求助10
3分钟前
噜噜大王发布了新的文献求助10
3分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
噜噜大王发布了新的文献求助30
4分钟前
科研通AI2S应助599采纳,获得10
4分钟前
4分钟前
高源发布了新的文献求助10
4分钟前
在水一方应助oddfunction采纳,获得10
4分钟前
abc完成签到 ,获得积分0
4分钟前
oleskarabach发布了新的文献求助10
5分钟前
oleskarabach发布了新的文献求助10
5分钟前
小马甲应助zhaliang采纳,获得10
5分钟前
6分钟前
852应助科研通管家采纳,获得30
6分钟前
zhaliang发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568208
求助须知:如何正确求助?哪些是违规求助? 4652699
关于积分的说明 14701943
捐赠科研通 4594540
什么是DOI,文献DOI怎么找? 2521065
邀请新用户注册赠送积分活动 1492895
关于科研通互助平台的介绍 1463698