作者
Kaifa Dong,Bingrong Shen,Xuan Xie,Xin Wang,Yaping Jiang,Ping Xie,Hui Peng,Guofu Ma
摘要
Zinc ion (Zn 2+ ) energy storage devices are considered promising candidates for next‐generation energy storage technologies, offering advantages in safety, low cost, and environmental friendliness. However, their commercialization remains limited by numerous challenges, including precise regulation of the molecular conformational relationships of electrolyte additives, optimization of electrode–electrolyte interfacial stability, scalability of manufacturing processes, and comprehensive analysis of long‐term degradation mechanisms. Pure Zn anode interfaces face numerous unavoidable challenges, including dendrite growth, corrosion, passivation, and hydrogen evolution reactions. This review summarizes recent advances in electrolyte additives for Zn 2+ energy storage devices, encompassing inorganic, organic, surfactant, and organic–inorganic composite additives, with a focus on the interaction mechanisms between additives, electrodes, and electrolytes. Furthermore, the optimal type and incorporation method of additives are discussed, emphasizing the positive impact of these factors on improving additive efficiency and performance. Finally, challenges and future directions for the development of electrolyte additives and advanced ZIHSs are proposed. This review aims to provide a comprehensive perspective to guide future research and development, advancing the efficiency, stability, and cost‐effectiveness of aqueous Zn 2+ energy storage devices.