Abstract Cerebrovascular imaging has undergone significant advances, enhancing the diagnosis and management of cerebrovascular diseases such as stroke, aneurysms, and arteriovenous malformations. This chapter explores key imaging modalities, including non-contrast computed tomography, computed tomography angiography, magnetic resonance imaging (MRI), and digital subtraction angiography. Innovations such as high-resolution vessel wall imaging, artificial intelligence (AI)-driven stroke detection, and advanced perfusion imaging have improved diagnostic accuracy and treatment selection. Additionally, novel techniques like 7-T MRI, molecular imaging, and functional ultrasound provide deeper insights into vascular pathology. AI and machine learning applications are revolutionizing automated detection and prognostication, expediting treatment decisions. Challenges remain in standardization, radiation exposure, and accessibility. However, continued technological advances, multimodal imaging integration, and AI-driven automation promise a future of precise, non-invasive cerebrovascular diagnostics, ultimately improving patient outcomes.