Geometric Deep Learning for Protein-Ligand Affinity Prediction with Hybrid Message Passing Strategies

计算机科学 人工智能 消息传递 机器学习 分布式计算
作者
Jiaren Li,Xiangpeng Bi,Wenjian Ma,Xiangpeng Bi,R.-S. Chen,Weigang Lu,Qing Cai,Fei Yang,Zhiqiang Wei,Shugang Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-14
标识
DOI:10.1109/jbhi.2025.3594210
摘要

Accurate prediction of protein-ligand affinity (PLA) is critical for drug discovery. Recent deep learning approaches have adopted data-driven models for PLA prediction by learning intrinsic patterns from one-dimensional (1D) sequential or two-dimensional (2D) graph representations of proteins and ligands. However, these low-dimensional methods overlook the three-dimensional (3D) geometric features, which are hypothesized to be critical in binding interaction. To address the above problem, we present a Geometric deep learning approach with Hybrid message passing strategies-HybridGeo, for protein-ligand affinity prediction. We adopt dual-view graph learning to model the intra- and inter-molecular atomic interactions and propose to aggregate the spatial information with hybrid strategies. In addition, to fully model the inter-residue dependency upon message aggregation, we adopt a geometric graph transformer on the residue-scale graph of protein pockets. Extensive experiments on the PDBbind dataset show that HybridGeo achieves state-of-the-art performance with a Root Mean Square Error (RMSE) of 1.172. HybridGeo also achieves the best among all baseline models on three external test sets, showcasing good generalizability and robustness. Through systematic ablation experiments, we validated the effectiveness of the proposed modules, and further demonstrated the superior performance of HybridGeo in predicting the binding affinity of macrocyclic compound complexes through case studies. Visualization analysis further indicates the biological interpretability of the model predictions. Our code is publicly available at https://github.com/anxiangbiye1231/HybridGeo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶知秋完成签到,获得积分10
刚刚
Popeye完成签到,获得积分10
2秒前
JW完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
阿塔塔完成签到,获得积分10
3秒前
6秒前
7秒前
叶子完成签到,获得积分10
7秒前
阿塔塔发布了新的文献求助10
7秒前
知安发布了新的文献求助10
7秒前
10秒前
Tayzon完成签到,获得积分10
10秒前
华仔应助独孤九原采纳,获得10
10秒前
珀拉瑞丝发布了新的文献求助10
10秒前
1816013153发布了新的文献求助10
11秒前
mulidexin2021完成签到,获得积分10
12秒前
66完成签到,获得积分20
13秒前
langzfs发布了新的文献求助10
13秒前
科研助理发布了新的文献求助10
13秒前
小左完成签到,获得积分10
13秒前
小二郎应助简单刺猬采纳,获得10
15秒前
贝贝完成签到,获得积分10
16秒前
17秒前
小左发布了新的文献求助10
17秒前
chelly完成签到,获得积分10
17秒前
小玉发布了新的文献求助10
17秒前
18秒前
Archer完成签到,获得积分10
18秒前
CodeCraft应助赵星瑶采纳,获得10
19秒前
所所应助WangJ1018采纳,获得30
21秒前
21秒前
Chenzhs完成签到,获得积分10
23秒前
小新完成签到,获得积分0
23秒前
23秒前
samantha完成签到,获得积分10
24秒前
糟糕的铁锤完成签到,获得积分0
24秒前
24秒前
斯文败类应助zhang17732207429采纳,获得30
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540561
求助须知:如何正确求助?哪些是违规求助? 4627197
关于积分的说明 14602739
捐赠科研通 4568254
什么是DOI,文献DOI怎么找? 2504430
邀请新用户注册赠送积分活动 1482011
关于科研通互助平台的介绍 1453645