Identifying soil groups and selecting a high-accuracy classification method based on multi-textural features with optimal window sizes using remote sensing images

支持向量机 模式识别(心理学) 随机森林 计算机科学 熵(时间箭头) 人工智能 特征提取 人工神经网络 遥感 地质学 量子力学 物理
作者
Mengqi Duan,Xiangyun Song,Zengqiang Li,Xiaoguang Zhang,Xiaodong Ding,Dejie Cui
出处
期刊:Ecological Informatics [Elsevier]
卷期号:81: 102563-102563 被引量:15
标识
DOI:10.1016/j.ecoinf.2024.102563
摘要

Determining the spatial distribution of soil groups accurately is crucial for managing soil resources. However, limitations persist in the mapping of soil groups using multi-textural features derived from remote sensing images. Identification of the optimal window size for multi-textural feature extraction and the most effective classification method for soil group recognition using remote sensing multi-textural features remains unresolved. In this study, we investigated soil groups in a representative area of the Jiaodong Peninsula. We extracted the mean and entropy texture parameters for various window sizes (3 × 3 to 25 × 25 in odd increments) from Landsat 8 images to determine the optimal sizes for multi-textural feature extraction. The efficacy of identifying soil groups via textural features was analyzed using maximum likelihood classification (MLC), support vector machine (SVM), artificial neural network (ANN), and random forest (RF) methods to ascertain the most suitable classification approach. The results indicate that the optimal window sizes were 19 × 19 for the mean parameter and 23 × 23 for the entropy parameter. The SVM method outperformed the MLC, ANN, and RF methods in terms of the classification accuracy. Notably, the SVM classification method reached a peak accuracy of 71.61% when combining multi-textural features with the optimal windows. This demonstrates the feasibility of different soil groups using multi-textural information from remote sensing images. These findings have notable implications in guiding digital soil mapping using multi-textural features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Genius发布了新的文献求助10
2秒前
林一发布了新的文献求助10
3秒前
沐浠发布了新的文献求助10
3秒前
4秒前
wanci应助hu970采纳,获得10
5秒前
6秒前
vvvg完成签到,获得积分10
7秒前
7秒前
桐桐应助zyc采纳,获得10
8秒前
老程完成签到,获得积分10
8秒前
9秒前
9秒前
烟花应助99668采纳,获得10
10秒前
Belinda发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
14秒前
热心的冬菱完成签到 ,获得积分10
15秒前
15秒前
缓慢思枫发布了新的文献求助10
16秒前
略略略发布了新的文献求助10
17秒前
suzy-123完成签到,获得积分10
17秒前
111发布了新的文献求助30
17秒前
康家二少完成签到,获得积分10
18秒前
小蘑菇应助细腻的三德采纳,获得10
19秒前
19秒前
无极微光应助xnkl采纳,获得20
20秒前
失眠亦寒发布了新的文献求助10
20秒前
丘比特应助耍酷楷瑞采纳,获得10
20秒前
20秒前
Asteroid发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
碧蓝青梦发布了新的文献求助10
22秒前
沉默莺发布了新的文献求助20
23秒前
24秒前
寸阴若岁完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497