Recent advances of application of optical imaging techniques for disease detection in fruits and vegetables: A review

多光谱图像 计算机科学 高光谱成像 农业 风险分析(工程) 人工智能 业务 生态学 生物
作者
Sudau Eh Teet,Norhashila Hashim
出处
期刊:Food Control [Elsevier BV]
卷期号:152: 109849-109849 被引量:27
标识
DOI:10.1016/j.foodcont.2023.109849
摘要

Fruits and vegetables are among the agricultural products that enjoy a high demand in the market. However, the most critical challenge in the production of fruits and vegetables is disease infections which can lead to economic loss. The current assessment method of disease infection still relies on conventional methods and laboratory analysis. The conventional methods although simple and easy are laborious and have less accuracy while laboratory analysis is costly and time-consuming. Over the last two decades, optical imaging techniques have emerged and are gaining interest in the agricultural and food industries. These techniques offer easy, rapid, accurate, reliable as well as user-friendly sensing tools for the identification of quality and disease infection in agricultural products. The fundamental aspect in the techniques is the interaction of light with the tissue and the manipulation of light when interacting with a surface. The integration of edge computing along with artificial intelligence has also reshaped the technology to another level. The use of other agricultural technologies such as drones or robots enables real-time monitoring and efficient farm management. Thus, this paper reviews recent advances in the application of optical imaging techniques for disease detection in fruits and vegetables. This includes computer vision, multispectral imaging, hyperspectral imaging, biospeckle and thermal imaging. The feasibility of the optical imaging techniques is discussed. Challenges and considerations for future research are also highlighted. This review provides a new insight into the recent application of optical imaging which is not only beneficial for the agricultural and food industries but also to other relevant industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
面面发布了新的文献求助10
2秒前
Mint给Mint的求助进行了留言
2秒前
3秒前
完美世界应助安安采纳,获得10
4秒前
Ava应助安安采纳,获得10
4秒前
4秒前
Orange应助安安采纳,获得10
4秒前
斯文败类应助安安采纳,获得10
4秒前
酷波er应助安安采纳,获得10
4秒前
今后应助无奈的石头采纳,获得10
5秒前
YCW发布了新的文献求助10
5秒前
称心涵柳发布了新的文献求助10
5秒前
huiliang发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助宋一c采纳,获得10
6秒前
Yvette发布了新的文献求助10
7秒前
knmno2应助坦率的怡采纳,获得30
8秒前
moonzz发布了新的文献求助10
9秒前
星辰大海应助prim采纳,获得10
9秒前
10秒前
Leeie03完成签到,获得积分10
10秒前
polly发布了新的文献求助10
11秒前
11秒前
SciGPT应助内向南风采纳,获得10
12秒前
13秒前
13秒前
maox1aoxin应助七妈采纳,获得30
13秒前
13秒前
15秒前
干净以珊发布了新的文献求助10
15秒前
王359发布了新的文献求助10
16秒前
小富发布了新的文献求助10
16秒前
16秒前
两张发布了新的文献求助30
17秒前
17秒前
未来EBM应助xiaoxioayixi采纳,获得10
18秒前
轻青发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397