BCD-TransNet: Automatic breast cancer detection and classification using transfer learning approach

计算机科学 学习迁移 乳腺癌 癌症检测 癌症 人工智能 传输(计算) 模式识别(心理学) 医学 内科学 并行计算
作者
Mohammad AmanullaKhan,P. Sridhar,Jamaludin Indra,R. Sridevi
出处
期刊:Technology and Health Care [IOS Press]
卷期号:33 (3): 1489-1508
标识
DOI:10.1177/09287329241296354
摘要

Breast Cancer (BC) is a predominant form of cancer diagnosed in women and one of the deadliest diseases. The important cause of death owing to the cancer amongst women is BC. However, the existing ML techniques are very challenge evaluate the performance of the classification of BC and difficult task for early diagnosis. To overcome this challenge, transfer learning framework have been broadly applied to histopathological images for classifying tumour. So, in this research a novel BC Detection using Transfer learning network (BCD-TransNet) is introduced to identify and classify BC stages. Initially, the histopathological images from BreakHis dataset are pre-processed using stationary wavelet based Retinex (SWR) for eliminating the noise and progress the image quality. The noise-free images are segmented using the Hybrid Greedy Snake-Krill Herd Optimization (HGS-KHO) algorithm. The BCD-TransNet model that incorporates with five different pre-trained networks in which the knowledge attained by each model is transfer to next network for extracting the most relevant features. This detection model has two different phases namely first level classification for identifying benign and malignant cells and the second level classification for identifying the different types in benign and malignant. Finally, the ML-based Decision tree is used to detect the stages of breast tumour. From the simulation analysis, the BCD-TransNet present well accuracy of 99.31% for the classification of breast tumour. The proposed Transfer learning-based BCD-TransNet model improves the overall accuracy 2.11%, 13.31%, 1.82% better than DLA-EABA, Pa-DBN-BC, TTCNN respectively .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗滚石完成签到,获得积分10
1秒前
3秒前
桐桐应助橘涂采纳,获得10
3秒前
czephyr发布了新的文献求助30
3秒前
4秒前
5秒前
喜羊羊和村长做朋友完成签到,获得积分10
6秒前
吴彬完成签到,获得积分10
7秒前
I2564完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
orixero应助呃呃呃采纳,获得10
11秒前
11秒前
miki完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
我行我素发布了新的文献求助10
14秒前
无极微光应助Solkatt采纳,获得20
15秒前
嘿嘿发布了新的文献求助10
15秒前
香蕉飞雪发布了新的文献求助10
16秒前
lei发布了新的文献求助10
17秒前
隋菿99发布了新的文献求助10
17秒前
Wind发布了新的文献求助30
18秒前
dj发布了新的文献求助10
18秒前
PenguinC发布了新的文献求助20
18秒前
温暖锦程完成签到,获得积分10
20秒前
张张发布了新的文献求助20
20秒前
洋洋发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
钮钴禄氏梅完成签到,获得积分10
22秒前
高高完成签到,获得积分10
22秒前
22秒前
领导范儿应助Lwj采纳,获得10
23秒前
24秒前
浮游应助潘旭采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554080
求助须知:如何正确求助?哪些是违规求助? 4638582
关于积分的说明 14653426
捐赠科研通 4580273
什么是DOI,文献DOI怎么找? 2512187
邀请新用户注册赠送积分活动 1487153
关于科研通互助平台的介绍 1458000