The Bidirectional Relationship Between Subjective Well-Being and Depression: A Cross-Sectional and Cross-Lagged Network Analysis

横断面研究 萧条(经济学) 心理学 经济 统计 数学 宏观经济学
作者
Chen Cao,Guilan Yu,Liwei Chen,Jun Qin,Ziyi Lin
出处
期刊:Psychology Research and Behavior Management [Dove Medical Press]
卷期号:Volume 18: 719-731
标识
DOI:10.2147/prbm.s508588
摘要

Network modeling has been suggested as an effective approach to uncover intricate relationships among emotional states and their underlying symptoms. This study aimed to explore the dynamic interactions between subjective well-being (SWB) and depressive symptoms over time, using cross-sectional and cross-lagged network analysis. Data were drawn from three waves (2016, 2018, and 2020) of the China Family Panel Studies (CFPS), including 13,409 participants aged 16 and above. SWB was measured through indicators like life satisfaction and future confidence, while depressive symptoms were assessed using the CES-D8 scale. Symptom-level interactions were analyzed via cross-sectional network analysis at each wave, and cross-lagged panel network analysis was employed to examine the temporal dynamics and bidirectional relationships between SWB and depressive symptoms. The cross-sectional symptom network analysis showed that the number of non-zero edges at T1, T2, and T3 were 50, 44, and 49, respectively, with network densities of 0.90, 0.80, and 0.89. The core symptom "feeling sad" (D7) consistently had a significantly higher strength than other symptoms. The negative correlation between "life satisfaction" (Z2) and depressive symptoms was particularly evident at T3. The cross-lagged symptom network analysis revealed the key roles of "feeling lonely" (D5) and "feeling sad" (D7), as well as "feeling unhappy" (D4) and "not enjoying life" (D6) across different time periods, which may form a negative feedback loop. "Life satisfaction" (Z2) and "confidence in the future" (Z3) exhibited significant protective effects, forming a positive feedback loop that suppresses negative emotions through mutual reinforcement. Stability analysis showed that the network structure was stable, with a centrality stability coefficient of 0.75. The study reveals a dynamic, bidirectional relationship between SWB and depressive symptoms. These results offer valuable insights for targeted interventions and public health initiatives aimed at improving mental well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wind发布了新的文献求助10
刚刚
科目三应助rixinsu采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
李健应助周易采纳,获得10
刚刚
1秒前
钙离子完成签到,获得积分10
1秒前
2秒前
2秒前
炙热秋翠发布了新的文献求助10
2秒前
肖敏发布了新的文献求助10
2秒前
今后应助董是鑫采纳,获得10
2秒前
3秒前
3秒前
彭于晏应助HJS采纳,获得10
4秒前
Hyunstar发布了新的文献求助10
4秒前
棋士发布了新的文献求助10
4秒前
5秒前
平常水卉完成签到,获得积分10
5秒前
Vresty完成签到 ,获得积分10
5秒前
5秒前
kkxx发布了新的文献求助10
5秒前
小白发布了新的文献求助10
5秒前
淡然逍遥完成签到,获得积分10
6秒前
FashionBoy应助jian采纳,获得10
6秒前
lumangxiaozi发布了新的文献求助10
6秒前
Kaka完成签到,获得积分10
7秒前
医痞子发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
飞蚁完成签到 ,获得积分10
8秒前
wy完成签到,获得积分10
8秒前
8秒前
devoel完成签到,获得积分10
8秒前
侯晶津完成签到,获得积分10
8秒前
徐英杰完成签到,获得积分10
8秒前
时光如梭发布了新的文献求助10
8秒前
不吃芝士完成签到,获得积分20
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700932
求助须知:如何正确求助?哪些是违规求助? 5141378
关于积分的说明 15232242
捐赠科研通 4856069
什么是DOI,文献DOI怎么找? 2605609
邀请新用户注册赠送积分活动 1556949
关于科研通互助平台的介绍 1515058