Generative Large Language Models for Detection of Speech Recognition Errors in Radiology Reports

医学 召回 听写 自然语言处理 生成模型 精确性和召回率 生成语法 人工智能 机器学习 语音识别 心理学 认知心理学 计算机科学
作者
Reuben Schmidt,Jarrel Seah,Ke Cao,L Lim,Wei Xiang Lim,Justin Yeung
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (2) 被引量:17
标识
DOI:10.1148/ryai.230205
摘要

This study evaluated the ability of generative large language models (LLMs) to detect speech recognition errors in radiology reports. A dataset of 3233 CT and MRI reports was assessed by radiologists for speech recognition errors. Errors were categorized as clinically significant or not clinically significant. Performances of five generative LLMs—GPT-3.5-turbo, GPT-4, text-davinci-003, Llama-v2–70B-chat, and Bard—were compared in detecting these errors, using manual error detection as the reference standard. Prompt engineering was used to optimize model performance. GPT-4 demonstrated high accuracy in detecting clinically significant errors (precision, 76.9%; recall, 100%; F1 score, 86.9%) and not clinically significant errors (precision, 93.9%; recall, 94.7%; F1 score, 94.3%). Text-davinci-003 achieved F1 scores of 72% and 46.6% for clinically significant and not clinically significant errors, respectively. GPT-3.5-turbo obtained 59.1% and 32.2% F1 scores, while Llama-v2–70B-chat scored 72.8% and 47.7%. Bard showed the lowest accuracy, with F1 scores of 47.5% and 20.9%. GPT-4 effectively identified challenging errors of nonsense phrases and internally inconsistent statements. Longer reports, resident dictation, and overnight shifts were associated with higher error rates. In conclusion, advanced generative LLMs show potential for automatic detection of speech recognition errors in radiology reports. Keywords: CT, Large Language Model, Machine Learning, MRI, Natural Language Processing, Radiology Reports, Speech, Unsupervised Learning Supplemental material is available for this article. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niuniu完成签到,获得积分10
刚刚
上官若男应助是真的采纳,获得10
1秒前
2秒前
兑现发布了新的文献求助10
2秒前
ZKcrane完成签到,获得积分10
3秒前
3秒前
个性尔槐发布了新的文献求助10
6秒前
6秒前
雪白鸿涛发布了新的文献求助10
7秒前
7秒前
Orange应助龚幻梦采纳,获得10
7秒前
shi发布了新的文献求助10
8秒前
8秒前
11秒前
Perrylin718发布了新的文献求助10
11秒前
13秒前
鹏友完成签到,获得积分10
14秒前
14秒前
研友_LMgz0Z发布了新的文献求助10
14秒前
shi完成签到,获得积分20
15秒前
暖暖完成签到,获得积分10
16秒前
18秒前
Peri发布了新的文献求助10
18秒前
liuliu发布了新的文献求助10
21秒前
无花果应助辛勤的孤容采纳,获得10
21秒前
22秒前
五月拾旧完成签到,获得积分10
23秒前
Leon完成签到,获得积分10
23秒前
dd发布了新的文献求助10
24秒前
Wuwuwu发布了新的文献求助10
24秒前
端庄南莲关注了科研通微信公众号
25秒前
打打应助合适台灯采纳,获得10
26秒前
三三发布了新的文献求助10
26秒前
27秒前
ZZQ发布了新的文献求助10
29秒前
bkagyin应助ymygdz采纳,获得10
30秒前
Jayee完成签到,获得积分10
31秒前
慕青应助TEMPO采纳,获得10
32秒前
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842615
求助须知:如何正确求助?哪些是违规求助? 3384669
关于积分的说明 10536580
捐赠科研通 3105212
什么是DOI,文献DOI怎么找? 1710077
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110