Vessel trajectory prediction with recurrent neural networks: an evaluation of datasets, features, and architectures

弹道 人工神经网络 计算机科学 人工智能 模式识别(心理学) 物理 天文
作者
Isaac Slaughter,Jagir Laxmichand Charla,Martin Siderius,John Lipor
出处
期刊:Journal of Ocean Engineering and Science [Elsevier]
被引量:3
标识
DOI:10.1016/j.joes.2024.01.002
摘要

Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
句灼完成签到,获得积分10
刚刚
雏菊完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
lian发布了新的文献求助10
4秒前
yee完成签到,获得积分10
5秒前
灵巧尔云发布了新的文献求助10
5秒前
6秒前
天之骄子完成签到 ,获得积分10
6秒前
lll发布了新的文献求助10
7秒前
sss完成签到 ,获得积分10
7秒前
llll发布了新的文献求助10
11秒前
12秒前
Ljc完成签到,获得积分10
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
积极的远山完成签到,获得积分10
16秒前
16秒前
浮光应助yhy采纳,获得50
16秒前
天天快乐应助1412yz采纳,获得10
16秒前
Chillym完成签到 ,获得积分10
17秒前
18秒前
饭神仙鱼发布了新的文献求助10
19秒前
科研通AI2S应助阳阳阳阳阳采纳,获得10
20秒前
赘婿应助llll采纳,获得10
20秒前
20秒前
漂亮夏兰发布了新的文献求助10
22秒前
灵巧尔云完成签到,获得积分10
23秒前
小马甲应助lian采纳,获得10
25秒前
结实寒梦完成签到 ,获得积分10
25秒前
小武同学发布了新的文献求助10
25秒前
26秒前
谨慎乌完成签到,获得积分10
26秒前
李爱国应助Ran采纳,获得10
27秒前
lll完成签到,获得积分20
28秒前
充电宝应助姜姜姜姜采纳,获得20
28秒前
29秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800