Interlayer sp3 Bonds and Chirality at Bilayer Graphene Oxide/Calcium Silicate Hydrate Abnormally Enhance Its Interlayer Stress Transfer

石墨烯 材料科学 之字形的 氧化物 双层 手性(物理) 压力(语言学) 化学物理 韧性 水合硅酸钙 复合材料 纳米技术 化学 几何学 夸克 水泥 Nambu–Jona Lasinio模型 数学 冶金 哲学 物理 量子力学 生物化学 手征对称破缺 语言学
作者
Lei Fan,Fangyuan Song,Jingjing Xu,Hongwei Wang,Fengzhi Wang
出处
期刊:ACS omega [American Chemical Society]
卷期号:9 (9): 10343-10352
标识
DOI:10.1021/acsomega.3c07943
摘要

Graphene oxide (GO) is an ideal reinforcing material with super design capability, which can achieve the combination of strength and toughness. However, the actual effect of GO is far below the theoretical prediction. This is mainly due to the weak interface between the nanofiller and the matrix. In this paper, a controllable method for improving interlayer stress transfer of double-layer graphene oxide/C–S–H (D-GO–CSH)-layered nanostructures is proposed by using interlayer sp3 bond and chirality. The results show that, compared with the control group, the normalized shear stress and normalized pull-out energy of the OH-sp3 model are increased by 44.93 and 49.25%, respectively, while those of the OO-sp3 model are increased by 32.26 and 31.03%, respectively. The interlayer sp3 bonds lead to a great enhancement (more than 3 times) in normalized interlayer stress transfer of D-GO–CSH-layered nanostructures while exerting a little opposite effect (about 5%). The improvement effects induced by the interlayer sp3 bonds are also strongly dependent on their distributions and the chirality of GO. According to the fracture mechanic theory and molecular dynamics results, the strain energy percentage difference (bond length and bond angle) of the zigzag-cen model is 34.8% lower than that of the control group model, which proves that the interlayer sp3 bonds have a remarkably positive effect on the interlayer stress transfer of D-GO–CSH-layered nanostructures. This provides a new way to further improve the interlayer stress transfer, pull-out energy, and interlayer shear stress of D-GO–CSH-layered nanostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
跳跳妈妈完成签到,获得积分10
1秒前
优美丹雪发布了新的文献求助10
1秒前
2秒前
aa发布了新的文献求助10
3秒前
许安完成签到,获得积分10
4秒前
霖昭发布了新的文献求助10
5秒前
JamesPei应助奋斗的忆南采纳,获得10
6秒前
文武兼备完成签到,获得积分10
6秒前
Amber完成签到,获得积分10
7秒前
7秒前
123发布了新的文献求助10
7秒前
英姑应助优美丹雪采纳,获得10
7秒前
张张完成签到,获得积分20
7秒前
8秒前
许甜甜鸭应助饼饼采纳,获得10
8秒前
科研通AI5应助紫泠榭采纳,获得10
9秒前
doriseqin完成签到,获得积分10
9秒前
汉堡包应助Aierlan611采纳,获得30
9秒前
情怀应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得30
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
科目三应助123采纳,获得10
13秒前
13秒前
jiujieweizi完成签到 ,获得积分10
14秒前
贪玩的傲菡完成签到 ,获得积分10
14秒前
15秒前
平淡小白菜完成签到,获得积分10
15秒前
斯文败类应助张正采纳,获得10
15秒前
aa完成签到,获得积分20
16秒前
wang发布了新的文献求助10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835045
求助须知:如何正确求助?哪些是违规求助? 3377563
关于积分的说明 10499197
捐赠科研通 3097057
什么是DOI,文献DOI怎么找? 1705466
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772130