Interactive changes in depression and loneliness symptoms prior to and during the COVID-19 pandemic: A longitudinal network analysis

孤独 萧条(经济学) 大流行 纵向研究 心理学 孤独量表 社会孤立 2019年冠状病毒病(COVID-19) 临床心理学 感觉 精神科 社会距离 老年学 医学 疾病 社会心理学 病理 经济 传染病(医学专业) 宏观经济学
作者
Heli Sun,Qinge Zhang,Tong Leong,Wei Bai,Pan Chen,Mei Ieng Lam,Ka-In Lok,Zhaohui Su,Teris Cheung,Gábor S. Ungvári,Todd Jackson,Sha Sha,Yu‐Tao Xiang
出处
期刊:Psychiatry Research-neuroimaging [Elsevier BV]
卷期号:333: 115744-115744 被引量:1
标识
DOI:10.1016/j.psychres.2024.115744
摘要

Depression and loneliness co-occur frequently. This study examined interactive changes between depression and loneliness among older adults prior to and during the COVID-19 pandemic from a longitudinal network perspective. This network study was based on data from three waves (2016–2017, 2018–2019, and 2020) of the English Longitudinal Study of Ageing (ELSA). Depression and loneliness were measured with the eight-item version of the Center for Epidemiologic Studies Depression Scale (CESD-8) and three item version of the University of California Los Angeles (UCLA) Loneliness Scale, respectively. A network model was constructed using an Ising Model while network differences were assessed using a Network Comparison Test. Central symptoms were identified via Expected Influence (EI). A total of 4,293 older adults were included in this study. The prevalence and network of depression and loneliness did not change significantly between the baseline and pre-pandemic assessments but increased significantly from the pre-pandemic assessment to during COVID-19 assessment. The central symptom with the strongest increase from pre-pandemic to pandemic assessments was "Inability to get going" (CESD8) and the edge with the highest increase across depression-loneliness symptom communities was "Lack companionship" (UCLA1) - "Inability to get going" (CESD8). Finally, "Feeling depressed" (CESD1) and "Everything was an effort" (CESD2) were the most central symptoms over the three assessment periods. The COVID-19 pandemic was associated with significant changes in the depression-loneliness network model. The most changed symptoms and edges could be treatment targets for reducing the risk of depression and loneliness in older adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松鼠15111完成签到,获得积分10
2秒前
htm426发布了新的文献求助10
3秒前
3秒前
peipei完成签到,获得积分10
6秒前
lll完成签到,获得积分10
6秒前
LSY完成签到,获得积分10
6秒前
陈嘉木发布了新的文献求助10
7秒前
科研通AI2S应助111采纳,获得10
7秒前
9秒前
try完成签到,获得积分10
9秒前
呆萌的秋天完成签到,获得积分20
11秒前
SciGPT应助mxq采纳,获得10
11秒前
15秒前
陶醉冬瓜发布了新的文献求助10
18秒前
20秒前
21秒前
茂陵酒人完成签到,获得积分10
21秒前
lixy完成签到,获得积分10
22秒前
Owen应助不奢采纳,获得10
22秒前
23秒前
啊啊完成签到,获得积分10
25秒前
赵毅权完成签到,获得积分10
25秒前
陈嘉木发布了新的文献求助10
25秒前
26秒前
白翊辰发布了新的文献求助10
26秒前
李成哲完成签到,获得积分10
26秒前
共享精神应助隐形觅翠采纳,获得10
30秒前
31秒前
35秒前
35秒前
skjt完成签到 ,获得积分10
36秒前
闾丘德地完成签到,获得积分10
37秒前
乐乐应助白翊辰采纳,获得10
38秒前
Alex发布了新的文献求助10
38秒前
39秒前
43秒前
开心夏真完成签到,获得积分10
44秒前
隐形觅翠发布了新的文献求助10
44秒前
45秒前
nic完成签到 ,获得积分10
45秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123